A note on perturbation series in supersymmetric gauge theories

被引:0
|
作者
Jorge G. Russo
机构
[1] Perimeter Institute for Theoretical Physics,
[2] Institució Catalana de Recerca i Estudis Avançats (ICREA),undefined
关键词
Supersymmetric gauge theory; Solitons Monopoles and Instantons; Nonperturbative Effects;
D O I
暂无
中图分类号
学科分类号
摘要
Exact results in supersymmetric Chern-Simons and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N} = 2$\end{document} Yang-Mills theories can be used to examine the quantum behavior of observables and the structure of the perturbative series. For the U(2) × U(2) ABJM model, we determine the asymptotic behavior of the perturbative series for the partition function and write it as a Borel transform. Similar results are obtained for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N} = 2$\end{document} SU(2) super Yang-Mills theory with four fundamental flavors and in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N} = {2^* }$\end{document} super Yang-Mills theory, for the partition function as well as for the expectation values for Wilson loop and ’t Hooft loop operators (in the 0 and 1 instanton sectors). In all examples, one has an alternate perturbation series where the coefficient of the nth term increases as n!, and the perturbation series are Borel summable. We also calculate the expectation value for a Wilson loop operator in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N} = {2^* }$\end{document} SU(N ) theory at large N in different regimes of the ’t Hooft gauge coupling and mass parameter. For large masses, the calculation reproduces the running gauge coupling for the pure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N} = 2$\end{document} SYM theory.
引用
收藏
相关论文
共 50 条
  • [21] Wrapping effects in supersymmetric gauge theories
    Fiamberti, Francesco
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2010, 58 (11-12): : 1023 - 1121
  • [22] Supersymmetric quiver gauge theories on the lattice
    Joseph, Anosh
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (01):
  • [23] ANOMALIES IN SUPERSYMMETRIC GAUGE-THEORIES
    GRIGORYAN, GV
    GRIGORYAN, RP
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1981, 33 (02): : 283 - 286
  • [24] Solitons, duality, and supersymmetric gauge theories
    Shapere, AD
    SOLITONS: PROPERTIES, DYNAMICS, INTERACTIONS, APPLICATIONS, 2000, : 241 - 251
  • [25] Brane tilings and supersymmetric gauge theories
    Hanany, A.
    Torri, G.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2011, 216 : 270 - 272
  • [26] Supersymmetric gauge theories on noncommutative superspace
    Araki, T
    Ito, K
    Ohtsuka, A
    PHYSICS LETTERS B, 2003, 573 (1-4) : 209 - 216
  • [27] On the beta function in supersymmetric gauge theories
    Carlino, G
    Konishi, K
    Maggiore, N
    Magnoli, N
    PHYSICS LETTERS B, 1999, 455 (1-4) : 171 - 178
  • [28] Superspin chains and supersymmetric gauge theories
    Nekrasov, Nikita
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (03)
  • [29] On integrable systems and supersymmetric gauge theories
    Marshakov, AV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 112 (01) : 791 - 826
  • [30] Supersymmetric gauge theories in three dimensions
    Bergshoeff, Eric A.
    Hohm, Olaf
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2009, 57 (5-7): : 338 - 347