A note on perturbation series in supersymmetric gauge theories

被引:0
|
作者
Jorge G. Russo
机构
[1] Perimeter Institute for Theoretical Physics,
[2] Institució Catalana de Recerca i Estudis Avançats (ICREA),undefined
关键词
Supersymmetric gauge theory; Solitons Monopoles and Instantons; Nonperturbative Effects;
D O I
暂无
中图分类号
学科分类号
摘要
Exact results in supersymmetric Chern-Simons and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N} = 2$\end{document} Yang-Mills theories can be used to examine the quantum behavior of observables and the structure of the perturbative series. For the U(2) × U(2) ABJM model, we determine the asymptotic behavior of the perturbative series for the partition function and write it as a Borel transform. Similar results are obtained for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N} = 2$\end{document} SU(2) super Yang-Mills theory with four fundamental flavors and in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N} = {2^* }$\end{document} super Yang-Mills theory, for the partition function as well as for the expectation values for Wilson loop and ’t Hooft loop operators (in the 0 and 1 instanton sectors). In all examples, one has an alternate perturbation series where the coefficient of the nth term increases as n!, and the perturbation series are Borel summable. We also calculate the expectation value for a Wilson loop operator in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N} = {2^* }$\end{document} SU(N ) theory at large N in different regimes of the ’t Hooft gauge coupling and mass parameter. For large masses, the calculation reproduces the running gauge coupling for the pure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N} = 2$\end{document} SYM theory.
引用
收藏
相关论文
共 50 条
  • [1] A note on perturbation series in supersymmetric gauge theories
    Russo, Jorge G.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06):
  • [2] Supersymmetric gauge theories
    Berman, DS
    Rabinovici, E
    UNITY FROM DUALITY: GRAVITY, GAUGE THEORY AND STRINGS, 2002, 76 : 137 - +
  • [3] 3d supersymmetric gauge theories and Hilbert series
    Cremonesi, Stefano
    STRING-MATH 2016, 2018, 98 : 21 - 47
  • [4] Supersymmetric deformations of maximally supersymmetric gauge theories
    Movshev, M. V.
    Schwarz, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (09):
  • [5] Supersymmetric deformations of maximally supersymmetric gauge theories
    M. V. Movshev
    A. Schwarz
    Journal of High Energy Physics, 2012
  • [6] Lectures on supersymmetric gauge theories
    Konishi, K
    ACTA PHYSICA POLONICA B, 2003, 34 (12): : 5947 - 5982
  • [7] Supersymmetric gauge theories on the lattice
    Montvay, I
    NUCLEAR PHYSICS B, 1997, : 853 - 855
  • [8] QUANTIZATION OF SUPERSYMMETRIC GAUGE THEORIES
    WIT, BD
    PHYSICAL REVIEW D, 1975, 12 (06): : 1628 - 1642
  • [9] Solitions in supersymmetric gauge theories
    Eto, M
    Isozumi, Y
    Nitta, M
    Ohashi, K
    Sakai, N
    PARTICLES, STRINGS, AND COSMOLOGY, 2005, 805 : 266 - 272
  • [10] Structure of Supersymmetric Gauge Theories
    Eguchi, Tohru
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2015, 2015 (11):