Bounds for Average toward the Resonance Barrier for GL(3) × GL(2) Automorphic Forms

被引:0
|
作者
Huan Qin
Yang Bo Ye
机构
[1] San Diego State University—Imperial Valley,Department of Mathematics
[2] The University of Iowa,undefined
关键词
Maass cusp form; holomorphic cusp form; Hypothesis S; resonance barrier; Kuznetsov trace formula; Petersson’s formula; Voronoi’s summation formula; 11F12; 11F30;
D O I
暂无
中图分类号
学科分类号
摘要
Let f be a fixed Maass form for SL3 (ℤ) with Fourier coefficients Af(m, n). Let g be a Maass cusp form for SL2 (ℤ) with Laplace eigenvalue 14+k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1 \over 4} + {k^2}$$\end{document} and Fourier coefficient λg(n), or a holomorphic cusp form of even weight k. Denote by SX(f × g, α, β) a smoothly weighted sum of Af(1, n)λg(n)e(αnβ) for X < n < 2X, where α ≠ 0 and β > 0 are fixed real numbers. The subject matter of the present paper is to prove non-trivial bounds for a sum of SX(f × g, α, β) over g as k tends to ∞ with X. These bounds for average provide insight for the corresponding resonance barriers toward the Hypothesis S as proposed by Iwaniec, Luo, and Sarnak.
引用
收藏
页码:1667 / 1683
页数:16
相关论文
共 50 条