Polar Graphs and Corresponding Involution Sets, Loops and Steiner Triple Systems

被引:0
|
作者
Helmut Karzel
Silvia Pianta
Elena Zizioli
机构
[1] T.U. München,Zentrum Mathematik
[2] Università Cattolica,Dipartimento di Matematica e Fisica
[3] Università degli Studi di Brescia,Dipartimento di Matematica, Facoltà di Ingegneria
来源
Results in Mathematics | 2006年 / 49卷
关键词
20N05; 05C70; 51E10; Involutorial difference loop; Involution set; Polar graph; Affine triple system; Pseudo-affine space;
D O I
暂无
中图分类号
学科分类号
摘要
A 1-factorization (or parallelism) of the complete graph with loops \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P, \mathcal{E}, ||)$$\end{document} is called polar if each 1-factor (parallel class) contains exactly one loop and for any three distinct vertices x1, x2, x3, if {x1} and {x2, x3} belong to a 1-factor then the same holds for any permutation of the set {1, 2, 3}. To a polar graph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (P, \mathcal{E}, ||)$$\end{document} there corresponds a polar involution set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (P, \mathcal{I})$$\end{document}, an idempotent totally symmetric quasigroup (P, *), a commutative, weak inverse property loop (P,  + ) of exponent 3 and a Steiner triple system \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (P, \mathcal{B})$$\end{document}.
引用
收藏
页码:149 / 160
页数:11
相关论文
共 50 条
  • [31] Doubling and tripling constructions for defining sets in Steiner triple systems
    Donovan, D
    Khodkar, A
    Street, AP
    GRAPHS AND COMBINATORICS, 2003, 19 (01) : 65 - 89
  • [32] Doubling and Tripling Constructions for Defining Sets in Steiner Triple Systems
    Diane Donovan
    Abdollah Khodkar
    Anne Penfold Street
    Graphs and Combinatorics, 2003, 19 : 65 - 89
  • [33] Motifs in triadic random graphs based on Steiner triple systems
    Winkler, Marco
    Reichardt, Joerg
    PHYSICAL REVIEW E, 2013, 88 (02)
  • [34] Large Cross-Free Sets in Steiner Triple Systems
    Gyarfas, Andras
    JOURNAL OF COMBINATORIAL DESIGNS, 2015, 23 (08) : 321 - 327
  • [35] CONSTRUCTION OF LARGE SETS OF ALMOST DISJOINT STEINER TRIPLE SYSTEMS
    LINDNER, CC
    ROSA, A
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A30 - A30
  • [36] A DOUBLING CONSTRUCTION FOR OVERLARGE SETS OF STEINER TRIPLE-SYSTEMS
    SHARRY, MJ
    STREET, AP
    ARS COMBINATORIA, 1991, 32 : 143 - 151
  • [37] Defining sets for the Steiner triple systems from affine spaces
    Gower, RAH
    JOURNAL OF COMBINATORIAL DESIGNS, 1997, 5 (03) : 155 - 175
  • [38] Binomial partial Steiner triple systems containing complete graphs
    Małgorzata Prażmowska
    Krzysztof Prażmowski
    Graphs and Combinatorics, 2016, 32 : 2079 - 2092
  • [39] Binomial partial Steiner triple systems containing complete graphs
    Prazmowska, Malgorzata
    Prazmowski, Krzysztof
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 2079 - 2092
  • [40] Steiner almost self-complementary graphs and halving near-Steiner triple systems
    Meszka, Mariusz
    Rosa, Alexander
    Ziolo, Irmina
    DISCRETE MATHEMATICS, 2009, 309 (18) : 5650 - 5654