Effect of various surfactants on stability and thermophysical properties of nanofluids

被引:0
|
作者
Jin Wang
Guolong Li
Tan Li
Min Zeng
Bengt Sundén
机构
[1] Hebei University of Technology,School of Energy and Environmental Engineering
[2] Ministry of Education,Key Laboratory of Thermo
[3] Lund University,Fluid Science and Engineering (Xi’an Jiaotong University)
关键词
Nanofluid; Thermal conductivity; Carbon nanotube; Viscosity; Surfactant;
D O I
暂无
中图分类号
学科分类号
摘要
The effect of Fe3O4 nanoparticles and carbon nanotubes (CNTs) on the viscosity of a nanofluid is experimentally investigated from 278 to 313 K by changing the nanoparticle volume fraction. These nanoparticles were put into distilled water with various surfactants, i.e., Colace (docusate sodium), trisodium citrate dihydrate (TSC), polyvinyl pyrrolidone, cetyl trimethylammonium bromide, tetramethylammonium hydroxide (TMAH), acacia senegal (GA), sodium dodecyl benzene sulfonate, sodium dodecyl sulfate (SDS), and sodium laurylsulfonate (SLS). Based on the present measurements, new empirical formulas are proposed for Fe3O4–water, CNT–water and Fe3O4–CNT–water nanofluids to provide accurate predictions for the nanofluid viscosity. Based on the viscosity testing, stabilities and thermal conductivities of Fe3O4–TMAH, Fe3O4–Colace, Fe3O4–TSC, CNT–SDS, CNT–GA, Fe3O4–CNT–SLS, and Fe3O4–CNT–TSC nanofluids with a volume concentration of 0.5% are investigated in the present research. Results indicate that better stability, smaller viscosity, and higher thermal conductivity are obtained, when the surfactants TMAH, SDS, and SLS are added into the Fe3O4–water, CNT–water, and the Fe3O4–CNT–water nanofluid, respectively. The CNT–water and Fe3O4–CNT–water nanofluids exhibit a shear-thinning behavior, whereas a linear rheological behavior can be observed by water-based Colace–Fe3O4, TMAH–Fe3O4, and TSC–Fe3O4 nanofluids.
引用
收藏
页码:4057 / 4070
页数:13
相关论文
共 50 条
  • [41] Ultrasonication Effect on Thermophysical Properties of Al2O3 Nanofluids
    Shah, Janki
    Ranjan, Mukesh
    Gupta, Sanjeev K.
    Sonvane, Yogesh
    [J]. 9TH NATIONAL CONFERENCE ON THERMOPHYSICAL PROPERTIES (NCTP-2017), 2018, 1951
  • [42] Experimental investigation of stability and thermophysical properties of carbon nanotubes suspension in the presence of different surfactants
    Mehdi Shanbedi
    Saeed Zeinali Heris
    Abdolmajid Maskooki
    [J]. Journal of Thermal Analysis and Calorimetry, 2015, 120 : 1193 - 1201
  • [43] Experimental investigation of stability and thermophysical properties of carbon nanotubes suspension in the presence of different surfactants
    Shanbedi, Mehdi
    Heris, Saeed Zeinali
    Maskooki, Abdolmajid
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 120 (02) : 1193 - 1201
  • [44] Experimental investigation of dispersion stability and thermophysical properties of ZnO/DIW nanofluids for heat transfer applications
    Qamar, Adnan
    Anwar, Zahid
    Ali, Hassan
    Imran, Shahid
    Shaukat, Rabia
    Abbas, Muhammad Mujtaba
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (05) : 4011 - 4026
  • [45] An open-access database of the thermophysical properties of nanofluids
    Mondejar, Maria E.
    Regidor, Maria
    Krafczyk, Joerg
    Ihmels, Christian
    Schmid, Bastian
    Kontogeorgis, Georgios M.
    Haglind, Fredrik
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2021, 333
  • [46] A review on thermophysical properties of nanofluids and heat transfer applications
    Gupta, Munish
    Singh, Vinay
    Kumar, Rajesh
    Said, Z.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 74 : 638 - 670
  • [47] Investigation of thermophysical properties of aqueous magnesium ferrite nanofluids
    Kirithiga, R.
    Hemalatha, J.
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2020, 317 (317)
  • [48] Particle shape effects on thermophysical properties of alumina nanofluids
    Timofeeva, Elena V.
    Routbort, Jules L.
    Singh, Dileep
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (01)
  • [49] Preparation and Thermophysical Properties of SiO2 Nanofluids
    Niu, YanFang
    Zhao, WeiLlin
    Gong, YuYing
    [J]. MATERIALS IN INDUSTRY AND NANOTECHNOLOGY, 2013, 771 : 125 - 128
  • [50] Covalent Functionalization of Graphene for the Enhancement of Thermophysical Properties in Nanofluids
    Selvaraj, Vishnuprasad
    Senthilkumar, Karthick
    Krishnan, Haribabu
    [J]. CHEMICAL ENGINEERING & TECHNOLOGY, 2021, 44 (05) : 811 - 818