Probability of twin formation on self-catalyzed GaAs nanowires on Si substrate

被引:0
|
作者
Masahito Yamaguchi
Ji-Hyun Paek
Hiroshi Amano
机构
[1] Nagoya University,Department of Electrical Engineering and Computer Science
关键词
GaAs nanowire; Molecular beam epitaxy; Vapor-liquid-solid; Twin boundary; Supersaturation; Wurtzite; zinc blende;
D O I
暂无
中图分类号
学科分类号
摘要
We attempted to control the incorporation of twin boundaries in self-catalyzed GaAs nanowires (NWs). Self-catalyzed GaAs NWs were grown on a Si substrate under various arsenic pressures using molecular beam epitaxy and the vapor-liquid-solid method. When the arsenic flux is low, wurtzite structures are dominant in the GaAs NWs. On the other hand, zinc blende structures become dominant as the arsenic flux rises. We discussed this phenomenon on the basis of thermodynamics and examined the probability of twin-boundary formation in detail.
引用
收藏
相关论文
共 50 条
  • [41] Self-catalyzed GaAs nanowire growth on Si-treated GaAs(100) substrates
    Ambrosini, S.
    Fanetti, M.
    Grillo, V.
    Franciosi, A.
    Rubini, S.
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 109 (09)
  • [42] Impact of the Shadowing Effect on the Crystal Structure of Patterned Self-Catalyzed GaAs Nanowires
    Schroth, Philipp
    Al Humaidi, Mahmoud
    Feigl, Ludwig
    Jakob, Julian
    Al Hassan, Ali
    Daytyan, Arman
    Kuepers, Hanno
    Tahraoui, Abbes
    Geelhaar, Lutz
    Pietsch, Ullrich
    Baumbach, Tilo
    [J]. NANO LETTERS, 2019, 19 (07) : 4263 - 4271
  • [43] Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy
    Bauer, Benedikt
    Rudolph, Andreas
    Soda, Marcello
    Fontcuberta i Morral, Anna
    Zweck, Josef
    Schuh, Dieter
    Reiger, Elisabeth
    [J]. NANOTECHNOLOGY, 2010, 21 (43)
  • [44] Crystal phase engineering of self-catalyzed GaAs nanowires using a RHEED diagram
    Dursap, T.
    Vettori, M.
    Danescu, A.
    Botella, C.
    Regreny, P.
    Patriarche, G.
    Gendry, M.
    Penuelas, J.
    [J]. NANOSCALE ADVANCES, 2020, 2 (05): : 2127 - 2134
  • [45] Formation of wurtzite sections in self-catalyzed GaP nanowires by droplet consumption
    Fedorov, V. V.
    Dvoretckaia, L. N.
    Kirilenko, D. A.
    Mukhin, I. S.
    Dubrovskii, V. G.
    [J]. NANOTECHNOLOGY, 2021, 32 (49)
  • [46] Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111)
    Hakkarainen, T. V.
    Schramm, A.
    Makela, J.
    Laukkanen, P.
    Guina, M.
    [J]. NANOTECHNOLOGY, 2015, 26 (27)
  • [47] Reasons of Crystallite Formation during the Self-Catalyzed GaAs Nanowire Growth
    Nastovjak, A. G.
    Shwartz, N. L.
    Emelyanov, E. A.
    Petrushkov, M. O.
    Vasev, A. V.
    Putyato, M. A.
    Preobrazhenskii, V. V.
    [J]. SEMICONDUCTORS, 2020, 54 (14) : 1850 - 1853
  • [48] Self-catalyzed InAs nanowires grown on Si: the key role of kinetics on their morphology
    Dhungana, Daya S.
    Mallet, Nicolas
    Fazzini, Pier-Francesco
    Larrieu, Guilhem
    Cristiano, Fuccio
    Plissard, Sebastien R.
    [J]. NANOTECHNOLOGY, 2022, 33 (48)
  • [49] Reasons of Crystallite Formation during the Self-Catalyzed GaAs Nanowire Growth
    A. G. Nastovjak
    N. L. Shwartz
    E. A. Emelyanov
    M. O. Petrushkov
    A. V. Vasev
    M. A. Putyato
    V. V. Preobrazhenskii
    [J]. Semiconductors, 2020, 54 : 1850 - 1853
  • [50] Raman spectroscopy of self-catalyzed GaAs1-xSbx nanowires grown on silicon
    Alarcon-Llado, Esther
    Conesa-Boj, Sonia
    Wallart, Xavier
    Caroff, Philippe
    Fontcuberta i Morral, Anna
    [J]. NANOTECHNOLOGY, 2013, 24 (40)