Partition Function;
Asymptotic Formula;
Fourier Expansion;
Prime Divisor;
Eisenstein Series;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let p(n) denote the number of partitions of a positive integer n. In this paper we study the asymptotic growth of p(n) using the equidistribution of Galois orbits of Heegner points on the modular curve X0(6). We obtain a new asymptotic formula for p(n) with an effective error term which is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${O(n^{-(\frac{1}{2}+\delta)})}$$\end{document} for some δ > 0. We then use this asymptotic formula to sharpen the classical bounds of Hardy and Ramanujan, Rademacher, and Lehmer on the error term in Rademacher’s exact formula for p(n).