Equidistribution of Heegner points and the partition function

被引:0
|
作者
Amanda Folsom
Riad Masri
机构
[1] University of Wisconsin,Department of Mathematics
来源
Mathematische Annalen | 2010年 / 348卷
关键词
Partition Function; Asymptotic Formula; Fourier Expansion; Prime Divisor; Eisenstein Series;
D O I
暂无
中图分类号
学科分类号
摘要
Let p(n) denote the number of partitions of a positive integer n. In this paper we study the asymptotic growth of p(n) using the equidistribution of Galois orbits of Heegner points on the modular curve X0(6). We obtain a new asymptotic formula for p(n) with an effective error term which is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O(n^{-(\frac{1}{2}+\delta)})}$$\end{document} for some δ > 0. We then use this asymptotic formula to sharpen the classical bounds of Hardy and Ramanujan, Rademacher, and Lehmer on the error term in Rademacher’s exact formula for p(n).
引用
收藏
页码:289 / 317
页数:28
相关论文
共 50 条