Frobenius objects in the category of relations

被引:0
|
作者
Rajan Amit Mehta
Ruoqi Zhang
机构
[1] Smith College,Department of Mathematics and Statistics
来源
Letters in Mathematical Physics | 2020年 / 110卷
关键词
Category of relations; Cohomology; Frobenius algebra; Groupoid; Simplicial set; Topological quantum field theory; 18B10; 18B40; 18D35; 18G30; 20L05; 57R56;
D O I
暂无
中图分类号
学科分类号
摘要
We give a characterization, in terms of simplicial sets, of Frobenius objects in the category of relations. This result generalizes a result of Heunen, Contreras, and Cattaneo showing that special dagger Frobenius objects in the category of relations are in correspondence with groupoids. As an additional example, we construct a Frobenius object in the category of relations whose elements are certain cohomology classes in a compact oriented Riemannian manifold.
引用
收藏
页码:1941 / 1959
页数:18
相关论文
共 50 条
  • [21] THE CATEGORY OF EQUIVALENCE RELATIONS
    Delle Rose, V
    San Mauro, L.
    Sorbi, A.
    ALGEBRA AND LOGIC, 2021, 60 (05) : 295 - 307
  • [22] The Category of Equivalence Relations
    V. Delle Rose
    L. San Mauro
    A. Sorbi
    Algebra and Logic, 2021, 60 : 295 - 307
  • [23] Topological objects in the category EQU
    Ershov Y.L.
    Siberian Advances in Mathematics, 2010, 20 (3) : 155 - 163
  • [24] TOPOLOGICAL OBJECTS IN CATEGORY EQU
    Ershov, Yu. L.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2010, 7 : 76 - 86
  • [25] SEPARATED OR COMPACT OBJECTS IN A CATEGORY
    PENON, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (05): : 384 - &
  • [26] A new category of relations: Combinationally Constrained relations
    Rohani Rankoohi, S.M.T.
    Mirian Hosseinabadi, S.H.
    Scientia Iranica, 2009, 16 (1 D) : 34 - 52
  • [27] A New Category of Relations: Combinationally Constrained Relations
    Rankoohi, S. M. T. Rohani
    Hosseinabadi, S. H. Mirian
    SCIENTIA IRANICA TRANSACTION D-COMPUTER SCIENCE & ENGINEERING AND ELECTRICAL ENGINEERING, 2009, 16 (01): : 34 - 52
  • [28] Frobenius Relations for Associative Lie Nilpotent Algebras
    Pchelintsev, S. V.
    MATHEMATICAL NOTES, 2023, 113 (3-4) : 414 - 419
  • [29] Frobenius Relations for Associative Lie Nilpotent Algebras
    S. V. Pchelintsev
    Mathematical Notes, 2023, 113 : 414 - 419
  • [30] ON THE GENERAL COMPOSITION OF RELATIONS IN A CATEGORY
    TOPENCHAROV, VV
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1986, 39 (07): : 13 - 16