On the equivalence between the LRT and F-test for testing variance components in a class of linear mixed models

被引:0
|
作者
Fares Qeadan
Ronald Christensen
机构
[1] University of Utah,
[2] University of New Mexico,undefined
来源
Metrika | 2021年 / 84卷
关键词
F-test; LRT; Generalized split-plot; Variance component; Random effect; Mixed model; 62C15; 62E15; 62F03; 62F10; 62K99;
D O I
暂无
中图分类号
学科分类号
摘要
For the special case of balanced one-way random effects ANOVA, it has been established that the generalized likelihood ratio test (LRT) and Wald’s test are largely equivalent in testing the variance component. We extend these results to explore the relationships between Wald’s F test, and the LRT for a much broader class of linear mixed models; the generalized split-plot models. In particular, we explore when the two tests are equivalent and prove that when they are not equivalent, Wald’s F test is more powerful, thus making the LRT test inadmissible. We show that inadmissibility arises in realistic situations with common number of degrees of freedom. Further, we derive the statistical distribution of the LRT under both the null and alternative hypotheses H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0$$\end{document} and H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_1$$\end{document} where H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0$$\end{document} is the hypothesis that the between variance component is zero. Providing an exact distribution of the test statistic for the LRT in these models will help in calculating a more accurate p-value than the traditionally used p-value derived from the large sample chi-square mixture approximations.
引用
收藏
页码:313 / 338
页数:25
相关论文
共 50 条
  • [31] U-tests for variance components in linear mixed models
    Nobre, Juvencio S.
    Singer, Julio M.
    Sen, Pranab K.
    [J]. TEST, 2013, 22 (04) : 580 - 605
  • [32] REHE: Fast variance components estimation for linear mixed models
    Yue, Kun
    Ma, Jing
    Thornton, Timothy
    Shojaie, Ali
    [J]. GENETIC EPIDEMIOLOGY, 2021, 45 (08) : 891 - 905
  • [33] Likelihood ratio tests for variance components in linear mixed models
    Giampaoli, Viviana
    Singer, Julio M.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (04) : 1435 - 1448
  • [34] Bootstrap tests for variance components in generalized linear mixed models
    Sinha, Sanjoy K.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (02): : 219 - 234
  • [35] Estimation of variance components in linear mixed measurement error models
    Karim Zare
    Abdolrahman Rasekh
    Ali Akbar Rasekhi
    [J]. Statistical Papers, 2012, 53 : 849 - 863
  • [36] Testing variance components in balanced linear growth curve models
    Drikvandi, Reza
    Khodadadi, Ahmad
    Verbeke, Geert
    [J]. JOURNAL OF APPLIED STATISTICS, 2012, 39 (03) : 563 - 572
  • [37] Generalized F-test for high dimensional regression coefficients of partially linear models
    Wang, Siyang
    Cui, Hengjian
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2017, 30 (05) : 1206 - 1226
  • [38] Generalized F-test for high dimensional regression coefficients of partially linear models
    Siyang Wang
    Hengjian Cui
    [J]. Journal of Systems Science and Complexity, 2017, 30 : 1206 - 1226
  • [39] Generalized F-Test for High Dimensional Regression Coefficients of Partially Linear Models
    WANG Siyang
    CUI Hengjian
    [J]. Journal of Systems Science & Complexity, 2017, 30 (05) : 1206 - 1226
  • [40] A weak instrument F-test in linear IV models with multiple endogenous variables
    Sanderson, Eleanor
    Windmeijer, Frank
    [J]. JOURNAL OF ECONOMETRICS, 2016, 190 (02) : 212 - 221