Self-propelling droplets on fibres subject to a crosswind

被引:0
|
作者
Pierre-Brice Bintein
Hadrien Bense
Christophe Clanet
David Quéré
机构
[1] Physique et Mécanique des Milieux Hétérogènes,
[2] UMR 7636 du CNRS,undefined
[3] ESPCI Paris,undefined
[4] PSL Research University,undefined
[5] LadHyX,undefined
[6] UMR 7646 du CNRS,undefined
[7] École polytechnique,undefined
来源
Nature Physics | 2019年 / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In many situations in which droplets wet fibres, wind is present. Large nets are used to harvest fog transported by coastal breezes from the ocean1,2 and noxious aerosols are contained in chemical plants by driving them across fibrous filters3,4. In glass wool factories, thin fibres are subjected to airflows as they are simultaneously sprayed with resin to glue them together5,6. The control and reconfiguration of the liquid in these situations is essential. It can be set geometrically, as is the case for assemblies of non-parallel fibres6,7 or tapered cylinders8–11, but the wind itself may also be exploited for this purpose4,12,13. Here, we show that a transverse wind can induce directional motion of droplets along horizontal fibres—even upwind if the fibre is tilted—and generate strong repulsive interactions between droplets. All of these effects are interpreted as consequences of asymmetric wakes behind the liquid.
引用
收藏
页码:1027 / 1032
页数:5
相关论文
共 50 条
  • [31] Self-propelling particles that transportthrombin to manage hemorrhage
    Baylis, J.
    Yeon, J. H.
    Thomson, M. H.
    Kazerooni, A.
    Wang, X.
    John, A. E.
    Lim, E. B.
    Chien, D.
    Lee, A.
    Zhang, J. Q.
    Piret, J. M.
    Machan, L. S.
    Burke, T. F.
    White, N. J.
    Kastrup, C. J.
    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2015, 13 : 888 - 888
  • [32] Circular Motion of Asymmetric Self-Propelling Particles
    Kuemmel, Felix
    ten Hagen, Borge
    Wittkowski, Raphael
    Buttinoni, Ivo
    Eichhorn, Ralf
    Volpe, Giovanni
    Loewen, Hartmut
    Bechinger, Clemens
    PHYSICAL REVIEW LETTERS, 2013, 110 (19)
  • [33] Chemotaxis and autochemotaxis of self-propelling droplet swimmers
    Jin, Chenyu
    Krueger, Carsten
    Maass, Corinna C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (20) : 5089 - 5094
  • [34] A NEW SELF-PROPELLING NASOENTERIC FEEDING TUBE
    JEPPSSON, B
    TRANBERG, KG
    BENGMARK, S
    CLINICAL NUTRITION, 1992, 11 (06) : 373 - 375
  • [35] Electrotaxis of Self-Propelling Artificial Swimmers in Microchannels
    Buness, Carola M.
    Rana, Avi
    Maass, Corinna C.
    Dey, Ranabir
    PHYSICAL REVIEW LETTERS, 2024, 133 (15)
  • [36] Hydrodynamic interaction of a self-propelling particle with a wall
    Shen, Zaiyi
    Wuerger, Alois
    Lintuvuori, Juho S.
    EUROPEAN PHYSICAL JOURNAL E, 2018, 41 (03):
  • [37] Perpetually Self-Propelling Chiral Single Crystals
    Panda, Manas K.
    Runcevski, Tome
    Husain, Ahmad
    Dinnebier, Robert E.
    Naumov, Pance
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (05) : 1895 - 1902
  • [38] Use of rotifers as self-propelling biohybrid microcleaners
    Soto, Fernando
    Lopez-Ramirez, Miguel
    Jeerapan, Itthipon
    Nourhani, Amir
    Wang, Joseph
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [39] Disposable Fluidic Self-Propelling Robot for Colonoscopy
    Pourghodrat, Abolfazl
    Dehghani, Hossein
    Nelson, Carl A.
    Oleynikov, Dmitry
    Dasgupta, Prithviraj
    Terry, Benjamin S.
    JOURNAL OF MEDICAL DEVICES-TRANSACTIONS OF THE ASME, 2014, 8 (03):
  • [40] Lattice Boltzmann and Jones matrix calculations for the determination of the director field structure in self-propelling nematic droplets
    Bahr, Christian
    PHYSICAL REVIEW E, 2021, 104 (04)