Lithium–antimony–lead liquid metal battery for grid-level energy storage

被引:0
|
作者
Kangli Wang
Kai Jiang
Brice Chung
Takanari Ouchi
Paul J. Burke
Dane A. Boysen
David J. Bradwell
Hojong Kim
Ulrich Muecke
Donald R. Sadoway
机构
[1] Massachusetts Institute of Technology,Department of Materials Science and Engineering
[2] 77 Massachusetts Avenue,undefined
[3] Cambridge,undefined
[4] Massachusetts 02139-4307,undefined
[5] USA,undefined
来源
Nature | 2014年 / 514卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
All-liquid batteries comprising a lithium negative electrode and an antimony–lead positive electrode have a higher current density and a longer cycle life than conventional batteries, can be more easily used to make large-scale storage systems, and so potentially present a low-cost means of grid-level energy storage.
引用
收藏
页码:348 / 350
页数:2
相关论文
共 50 条
  • [1] Lithium-antimony-lead liquid metal battery for grid-level energy storage
    Wang, Kangli
    Jiang, Kai
    Chung, Brice
    Ouchi, Takanari
    Burke, Paul J.
    Boysen, Dane A.
    Bradwell, David J.
    Kim, Hojong
    Muecke, Ulrich
    Sadoway, Donald R.
    [J]. NATURE, 2014, 514 (7522) : 348 - +
  • [2] Impact of battery degradation on energy arbitrage revenue of grid-level energy storage
    Wankmueller, Florian
    Thimmapuram, Prakash R.
    Gallagher, Kevin G.
    Botterud, Audun
    [J]. JOURNAL OF ENERGY STORAGE, 2017, 10 : 56 - 66
  • [3] Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage
    Xiayue Fan
    Bin Liu
    Jie Liu
    Jia Ding
    Xiaopeng Han
    Yida Deng
    Xiaojun Lv
    Ying Xie
    Bing Chen
    Wenbin Hu
    Cheng Zhong
    [J]. Transactions of Tianjin University, 2020, 26 : 92 - 103
  • [4] Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage
    Xiayue Fan
    Bin Liu
    Jie Liu
    Jia Ding
    Xiaopeng Han
    Yida Deng
    Xiaojun Lv
    Ying Xie
    Bing Chen
    Wenbin Hu
    Cheng Zhong
    [J]. Transactions of Tianjin University, 2020, (02) - 103
  • [5] Grid-Level Application of Electrical Energy Storage
    Zhang, Yingchen
    Gevorgian, Vahan
    Wang, Caixia
    Lei, Xuejiao
    Chou, Ella
    Yang, Rui
    Li, Qionghui
    Jiang, Liping
    [J]. IEEE POWER & ENERGY MAGAZINE, 2017, 15 (05): : 51 - 58
  • [6] Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage
    Xiayue Fan
    Bin Liu
    Jie Liu
    Jia Ding
    Xiaopeng Han
    Yida Deng
    Xiaojun Lv
    Ying Xie
    Bing Chen
    Wenbin Hu
    Cheng Zhong
    [J]. Transactions of Tianjin University, 2020, 26 (02) : 92 - 103
  • [7] Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage
    Fan, Xiayue
    Liu, Bin
    Liu, Jie
    Ding, Jia
    Han, Xiaopeng
    Deng, Yida
    Lv, Xiaojun
    Xie, Ying
    Chen, Bing
    Hu, Wenbin
    Zhong, Cheng
    [J]. TRANSACTIONS OF TIANJIN UNIVERSITY, 2020, 26 (02) : 92 - 103
  • [8] Evaluation of grid-level adaptability for stationary battery energy storage system applications in Europe
    Mueller, Marcus
    Viernstein, Lorenz
    Cong Nam Truong
    Eiting, Andreas
    Hesse, Holger C.
    Witzmann, Rolf
    Jossen, Andreas
    [J]. JOURNAL OF ENERGY STORAGE, 2017, 9 : 1 - 11
  • [9] Magnesium-Antimony Liquid Metal Battery for Stationary Energy Storage
    Bradwell, David J.
    Kim, Hojong
    Sirk, Aislinn H. C.
    Sadoway, Donald R.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) : 1895 - 1897
  • [10] Techno-Economic Assessment of Grid-Level Battery Energy Storage Supporting Distributed Photovoltaic Power
    Lopez-Lorente, Javier
    Liu, Xueqin Amy
    Best, Robert J.
    Makrides, George
    Morrow, D. John
    [J]. IEEE ACCESS, 2021, 9 : 146256 - 146280