Interpretable scientific discovery with symbolic regression: a review

被引:0
|
作者
Nour Makke
Sanjay Chawla
机构
[1] HBKU,Qatar Computing Research Institute
来源
关键词
Symbolic Regression; Automated Scientific Discovery; Interpretable AI;
D O I
暂无
中图分类号
学科分类号
摘要
Symbolic regression is emerging as a promising machine learning method for learning succinct underlying interpretable mathematical expressions directly from data. Whereas it has been traditionally tackled with genetic programming, it has recently gained a growing interest in deep learning as a data-driven model discovery tool, achieving significant advances in various application domains ranging from fundamental to applied sciences. In this survey, we present a structured and comprehensive overview of symbolic regression methods, review the adoption of these methods for model discovery in various areas, and assess their effectiveness. We have also grouped state-of-the-art symbolic regression applications in a categorized manner in a living review.
引用
收藏
相关论文
共 50 条
  • [41] Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts
    Weng, Baicheng
    Song, Zhilong
    Zhu, Rilong
    Yan, Qingyu
    Sun, Qingde
    Grice, Corey G.
    Yan, Yanfa
    Yin, Wan-Jian
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [42] Interpretable Functional Logistic Regression
    Lv, Cui
    Chen, Di-Rong
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), 2018,
  • [43] Interpretable Neural-Symbolic Concept Reasoning
    Barbiero, Pietro
    Ciravegna, Gabriele
    Giannini, Francesco
    Zarlenga, Mateo Espinosa
    Magister, Lucie Charlotte
    Tonda, Alberto
    Lio, Pietro
    Precioso, Frederic
    Jamnik, Mateja
    Marra, Giuseppe
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [44] Scaled symbolic regression
    Keijzer M.
    Genetic Programming and Evolvable Machines, 2004, 5 (03) : 259 - 269
  • [45] Priors For Symbolic Regression
    Bartlett, Deaglan J.
    Desmond, Harry
    Ferreira, Pedro G.
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 2402 - 2411
  • [46] Exhaustive Symbolic Regression
    Bartlett, Deaglan J.
    Desmond, Harry
    Ferreira, Pedro G.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (04) : 950 - 964
  • [47] ACCURACY IN SYMBOLIC REGRESSION
    Korns, Michael F.
    GENETIC PROGRAMMING THEORY AND PRACTICE IX, 2011, : 129 - 151
  • [48] SYMBOLIC REGRESSION WITH SAMPLING
    Kommenda, Michael
    Kronberger, Gabriel K.
    Affenzeller, Michael
    Winkler, Stephan M.
    Feilmayr, Christoph
    Wagner, Stefan
    22ND EUROPEAN MODELING AND SIMULATION SYMPOSIUM (EMSS 2010), 2010, : 13 - 18
  • [49] Multiview Symbolic Regression
    Russeil, Etienne
    de Franca, Fabricio Olivetti
    Malanchev, Konstantin
    Burlacu, Bogdan
    Ishida, Emille E. O.
    Leroux, Marion
    Michelin, Clement
    Moinard, Guillaume
    Gangler, Emmanuel
    PROCEEDINGS OF THE 2024 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2024, 2024, : 961 - 970
  • [50] Enhancing the shear-stress-transport turbulence model with symbolic regression: A generalizable and interpretable data-driven approach
    Wu, Chenyu
    Zhang, Yufei
    PHYSICAL REVIEW FLUIDS, 2023, 8 (08):