Counterexamples to the local–global divisibility over elliptic curves

被引:0
|
作者
Gabriele Ranieri
机构
[1] Pontificia Universidad Católica de Valparaíso,Instituto de Matemáticas
关键词
Elliptic curves; Local–global; Galois cohomology; 11R34; 11G05;
D O I
暂无
中图分类号
学科分类号
摘要
Let p≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \ge 5$$\end{document} be a prime number. We find all the possible subgroups G of GL2(Z/pZ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{GL}_2 ({\mathbb Z}/ p {\mathbb Z})$$\end{document} such that there exist a number field k and an elliptic curve E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}$$\end{document} defined over k such that the Gal(k(E[p])/k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Gal}(k ({\mathcal {E}}[p])/k)$$\end{document}-module E[p]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}[p]$$\end{document} is isomorphic to the G-module (Z/pZ)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb Z}/ p {\mathbb Z})^2$$\end{document} and there exists n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \in {\mathbb N}$$\end{document} such that the local–global divisibility by pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^n$$\end{document} does not hold over E(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}(k)$$\end{document}.
引用
收藏
页码:1215 / 1225
页数:10
相关论文
共 50 条
  • [41] Curves over every global field violating the local-global principle
    Poonen B.
    Journal of Mathematical Sciences, 2010, 171 (6) : 782 - 785
  • [42] Local-global principles for tori over arithmetic curves
    Colliot-Thelene, Jean-Louis
    Harbater, David
    Hartmann, Julia
    Krashen, Daniel
    Parimala, Raman
    Suresh, Venapally
    ALGEBRAIC GEOMETRY, 2020, 7 (05): : 607 - 633
  • [43] LOCAL-GLOBAL PRINCIPLES FOR TORSORS OVER ARITHMETIC CURVES
    Harbater, David
    Hartmann, Julia
    Krashen, Daniel
    AMERICAN JOURNAL OF MATHEMATICS, 2015, 137 (06) : 1559 - 1612
  • [44] Common divisors of elliptic divisibility sequences over function fields
    Joseph H. Silverman
    manuscripta mathematica, 2004, 114 : 431 - 446
  • [45] ELLIPTIC DIVISIBILITY SEQUENCES IN CERTAIN RANKS OVER FINITE FIELDS
    Gezer, B.
    Bizim, O.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2009, 38 (02): : 161 - 171
  • [46] Heegner points and the rank of elliptic curves over large extensions of global fields
    Breuer, Florian
    Im, Bo-Hae
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (03): : 481 - 490
  • [47] Supersingular curves over finite fields and weight divisibility of codes
    Guneri, Cem
    McGuire, Gary
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 474 - 484
  • [48] ON UNIVERSAL ELLIPTIC-CURVES OVER IGUSA CURVES
    ULMER, DL
    INVENTIONES MATHEMATICAE, 1990, 99 (02) : 377 - 391
  • [49] LOCAL INVARIANTS OF ISOGENOUS ELLIPTIC CURVES
    Dokchitser, Tim
    Dokchitser, Vladimir
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (06) : 4339 - 4358
  • [50] ELLIPTIC DIVISIBILITY SEQUENCES
    WARD, M
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (05) : 481 - 481