Discrete Zγ: Embedded Circle Patterns with the Square Grid Combinatorics and Discrete Painlevé Equations

被引:0
|
作者
S. I. Agafonov
机构
[1] Loughborough University,Department of Mathematical Sciences
来源
关键词
circle patterns; discrete conformal map; discrete Painlevé equation;
D O I
暂无
中图分类号
学科分类号
摘要
We study a discrete analogue of the holomorphic map zγ. It is given by Schramm's circle pattern with the square grid combinatorics. We show that the corresponding circle patterns are embedded and described by special separatrix solutions of discrete Painlevé equations. We establish global properties of these solutions and of the discrete zγ.
引用
收藏
页码:3 / 13
页数:10
相关论文
共 50 条
  • [41] Continuous and Discrete Painlev, Equations Arising from the Gap Probability Distribution of the Finite Gaussian Unitary Ensembles
    Cao, Man
    Chen, Yang
    Griffin, James
    JOURNAL OF STATISTICAL PHYSICS, 2014, 157 (02) : 363 - 375
  • [42] Constructing discrete Painlevé equations: from E8(1) to A1(1) and back
    A. Ramani
    B. Grammaticos
    R. Willox
    T. Tamizhmani
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 520 - 535
  • [43] An Explicit Formula for the Discrete Power Function Associated with Circle Patterns of Schramm Type
    Ando, Hisashi
    Hay, Mike
    Kajiwara, Kenji
    Masuda, Tetsu
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2014, 57 (01): : 1 - 41
  • [44] Direct least-square solutions to integral equations containing discrete data
    Frankel, JI
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 1996, 10 (01) : 182 - 186
  • [45] ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE, q-GAMMA WEIGHTS, AND DISCRETE PAINLEVE EQUATIONS
    Biane, Philippe
    MOSCOW MATHEMATICAL JOURNAL, 2014, 14 (01) : 1 - 27
  • [46] The space of initial conditions and the property of an almost good reduction in discrete Painlevé II equations over finite fields
    Masataka Kanki
    Jun Mada
    Tetsuji Tokihiro
    Journal of Nonlinear Mathematical Physics, 2013, 20 : 101 - 109
  • [47] Discrete Painleve equations from singularity patterns: The asymmetric trihomographic case
    Grammaticos, B.
    Ramani, A.
    Willox, R.
    Satsuma, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (03)
  • [48] Mixed discrete least square meshless method for solution of quadratic partial differential equations
    Faraji, S.
    Afshar, M. H.
    Amani, J.
    SCIENTIA IRANICA, 2014, 21 (03) : 492 - 504
  • [49] Application of Factor Difference Scheme to Solving Discrete Flow Equations Based on Unstructured Grid
    刘正先
    王学军
    戴继双
    张楚华
    Transactions of Tianjin University, 2009, (05) : 324 - 329
  • [50] Application of factor difference scheme to solving discrete flow equations based on unstructured grid
    Liu Z.
    Wang X.
    Dai J.
    Zhang C.
    Transactions of Tianjin University, 2009, 15 (5) : 324 - 329