Adaptive rendering based on robust principal component analysis

被引:0
|
作者
Hongliang Yuan
Changwen Zheng
机构
[1] Chinese Academy of Sciences,Science and Technology on Integrated Information System Laboratory, Institute of Software
[2] University of Chinese Academy of Sciences,undefined
来源
The Visual Computer | 2018年 / 34卷
关键词
Adaptive rendering; Robust principal component analysis; Propagation filter; Monte Carlo ray tracing; Mean squared error;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an adaptive sampling and reconstruction method based on the robust principal component analysis (PCA) to denoise Monte Carlo renderings. Addressing spike noise is a challenging problem in adaptive rendering methods. We adopt the robust PCA as a pre-processing step to efficiently decompose spike noise from rendered image after the image space is sampled. Then we leverage patch-based propagation filter for feature prefiltering and apply the robust PCA to reduce dimensionality in high-dimensional feature space. After that, we estimate a per-pixel pilot bandwidth derived from kernel density estimation and construct the multivariate local linear estimator in the reduced feature space to estimate the value of each pixel. Finally, we distribute additional ray samples in the regions with higher estimated mean squared error if sampling budget remains. We demonstrate that our method makes significant improvement in terms of both numerical error and visual quality compared to the state-of-the-art.
引用
收藏
页码:551 / 562
页数:11
相关论文
共 50 条
  • [21] Adaptive Principal Component Analysis
    Li, Xiangyu
    Wang, Hua
    PROCEEDINGS OF THE 2022 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2022, : 486 - 494
  • [22] Adaptive Anomaly Detection in Cloud using Robust and Scalable Principal Component Analysis
    Agrawal, Bikash
    Wiktorski, Tomasz
    Rong, Chunming
    2016 15TH INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING (ISPDC), 2016, : 100 - 106
  • [23] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [24] Robust Multilinear Principal Component Analysis
    Inoue, Kohei
    Hara, Kenji
    Urahama, Kiichi
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 591 - 597
  • [25] Robust Stochastic Principal Component Analysis
    Goes, John
    Zhang, Teng
    Arora, Raman
    Lerman, Gilad
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 266 - 274
  • [26] Deciphering Latent Uncertainty Sources with Principal Component Analysis for Adaptive Robust Optimization
    Ning, Chao
    You, Fengqi
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT B, 2019, 46 : 1189 - 1194
  • [27] Robust Principal Component Analysis on Graphs
    Shahid, Nauman
    Kalofolias, Vassilis
    Bresson, Xavier
    Bronsteint, Michael
    Vandergheynst, Pierre
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2812 - 2820
  • [28] Robust Kernel Principal Component Analysis
    Huang, Su-Yun
    Yeh, Yi-Ren
    Eguchi, Shinto
    NEURAL COMPUTATION, 2009, 21 (11) : 3179 - 3213
  • [29] Inductive Robust Principal Component Analysis
    Bao, Bing-Kun
    Liu, Guangcan
    Xu, Changsheng
    Yan, Shuicheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (08) : 3794 - 3800
  • [30] Adaptive Weighted Sparse Principal Component Analysis for Robust Unsupervised Feature Selection
    Yi, Shuangyan
    He, Zhenyu
    Jing, Xiao-Yuan
    Li, Yi
    Cheung, Yiu-Ming
    Nie, Feiping
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (06) : 2153 - 2163