Fixed points of non-Hamiltonian symplectomorphisms

被引:0
|
作者
Luisa D. Stelling
机构
[1] A.C. (CIMAT),Centro de Investigación en Matemáticas
来源
The Journal of Geometric Analysis | 2001年 / 11卷 / 4期
关键词
primary: 53D40; secondary: 58E05; Arnold conjecture; Floer homology; pseudo-holomorphic curves; fixed points;
D O I
10.1007/BF02930763
中图分类号
学科分类号
摘要
In this article we study a version of the Arnold conjecture for symplectic maps that are not Hamiltonian. That is, we give a lower bound for the number of fixed points such a map must have. We achieve the result for symplectic maps with sufficiently small Calabi invariant.
引用
收藏
页码:693 / 716
页数:23
相关论文
共 50 条
  • [32] On symplectomorphisms and Hamiltonian flows
    Franco Cardin
    Journal of Fixed Point Theory and Applications, 2022, 24
  • [33] NON-HAMILTONIAN DYNAMIC-SYSTEMS
    SANNIKOV, SS
    UVAROV, II
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1990, 33 (10): : 5 - 12
  • [34] Better approximations of non-Hamiltonian graphs
    Iwama, K
    Miyano, E
    DISCRETE APPLIED MATHEMATICS, 1998, 81 (1-3) : 239 - 261
  • [35] On the size of maximally non-hamiltonian digraphs
    Lichiardopol, Nicolas
    Zamfirescu, Carol T.
    ARS MATHEMATICA CONTEMPORANEA, 2019, 16 (01) : 59 - 66
  • [36] Better approximations of non-Hamiltonian graphs
    Department of Information Science, Kyoto University, Kyoto 606-01, Japan
    不详
    Discrete Appl Math, 1-3 (239-261):
  • [37] NON-HAMILTONIAN CUBIC PLANAR MAPS
    FAULKNER, GB
    YOUNGER, DH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A386 - A386
  • [38] NON-HAMILTONIAN SYMMETRIES OF A BOUSSINESQ EQUATION
    TENEIKELDER, HMM
    BROER, LJF
    JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (08) : 2151 - 2153
  • [39] Non-Hamiltonian equilibrium statistical mechanics
    Sergi, A
    PHYSICAL REVIEW E, 2003, 67 (02):
  • [40] Regular non-hamiltonian polyhedral graphs
    Van Cleemput, Nico
    Zamfirescu, Carol T.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 : 192 - 206