Production of polarized particle beams via ultraintense laser pulses

被引:11
|
作者
Sun, Ting [1 ]
Zhao, Qian [1 ]
Xue, Kun [1 ]
Lu, Zhi-Wei [1 ]
Ji, Liang-Liang [2 ]
Wan, Feng [1 ]
Wang, Yu [1 ]
Salamin, Yousef I. [3 ]
Li, Jian-Xing [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Phys, Key Lab Nonequilibrium Synth & Modulat Condensed M, Minist Educ, Xian 710049, Shaanxi, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab High Field Laser Phys, Shanghai 201800, Peoples R China
[3] Amer Univ Sharjah, Dept Phys, POB 26666, Sharjah, U Arab Emirates
基金
中国国家自然科学基金;
关键词
Strong-field QED; Nonlinear Compton scattering; Nonlinear Breit-Wheeler pairs; Quantum Monte-Carlo simulations; Particle-in-cell simulations; NONLINEAR COMPTON-SCATTERING; MEV GAMMA-RAYS; PAIR PRODUCTION; ELECTROMAGNETIC-WAVE; INTENSE FIELD; SPIN; ELECTRON; PHOTON; EMISSION; PHYSICS;
D O I
10.1007/s41614-022-00099-9
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
High-energy spin-polarized electron, positron, and gamma \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document} -photon beams have many significant applications in the study of material properties, nuclear structure, particle physics, and high-energy astrophysics. Thus, efficient production of such polarized beams attracts a broad spectrum of research interests. This is driven mainly by the rapid advancements in ultrashort and ultraintense laser technology. Currently, available laser pulses can achieve peak intensities in the range of 10 22 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>{22}$$\end{document} - 10 23 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>{23}$$\end{document} Wcm - 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Wcm}<^>{-2}$$\end{document} , with pulse durations of tens of femtoseconds. The dynamics of particles in laser fields of the available intensities is dominated by quantum electrodynamics (QED) and the interaction mechanisms have reached regimes spanned by nonlinear multiphoton absorption (strong-field QED processes). In strong-field QED processes, the scattering cross-sections obviously depend on the spin and polarization of the particles, and the spin-dependent photon emission and the radiation-reaction effects can be utilized to produce the polarized particles. An ultraintense laser-driven polarized particle source possesses the advantages of high brilliance and compactness, which could open the way for the unexplored aspects in a range of researches. In this work, we briefly review the seminal conclusions from the study of the polarization effects in strong-field QED processes, as well as the progress made by recent proposals for production of the polarized particles by laser-beam or laser-plasma interactions.
引用
收藏
页数:36
相关论文
共 50 条
  • [41] Propagation of ultraintense laser pulses through overdense plasma layers
    Guerin, S
    Mora, P
    Adam, JC
    Heron, A
    Laval, G
    PHYSICS OF PLASMAS, 1996, 3 (07) : 2693 - 2701
  • [42] Proton acceleration by a pair of successive ultraintense femtosecond laser pulses
    Ferri, J.
    Senje, L.
    Dalui, M.
    Svensson, K.
    Aurand, B.
    Hansson, M.
    Persson, A.
    Lundh, O.
    Wahlstrom, C. -G.
    Gremillet, L.
    Siminos, E.
    DuBois, T. C.
    Yi, L.
    Martins, J. L.
    Fulop, T.
    PHYSICS OF PLASMAS, 2018, 25 (04)
  • [43] Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum
    Quesnel, B
    Mora, P
    PHYSICAL REVIEW E, 1998, 58 (03): : 3719 - 3732
  • [44] Nonlinear transparency window for ultraintense femtosecond laser pulses in the atmosphere
    Panov, Nikolay A.
    Shipilo, Daniil E.
    Saletsky, Alexander M.
    Liu, Weiwei
    Polynkin, Pavel G.
    Kosareva, Olga G.
    PHYSICAL REVIEW A, 2019, 100 (02)
  • [45] Secondary Particle Production from Laser Accelerated Beams
    Krasa, Josef
    Margarone, Daniele
    LIGHT AT EXTREME INTENSITIES 2011, 2012, 1462 : 139 - 142
  • [46] Radiation-Pressure Acceleration of Ion Beams Driven by Circularly Polarized Laser Pulses
    Henig, A.
    Steinke, S.
    Schnuerer, M.
    Sokollik, T.
    Hoerlein, R.
    Kiefer, D.
    Jung, D.
    Schreiber, J.
    Hegelich, B. M.
    Yan, X. Q.
    Meyer-ter-Vehn, J.
    Tajima, T.
    Nickles, P. V.
    Sandner, W.
    Habs, D.
    PHYSICAL REVIEW LETTERS, 2009, 103 (24)
  • [47] Double plasma mirror for ultrahigh temporal contrast ultraintense laser pulses
    Levy, Anna
    Ceccotti, Tiberio
    D'Oliveira, Pascal
    Reau, Fabrice
    Perdrix, Michel
    Quere, Fabien
    Monot, Pascal
    Bougeard, Michel
    Lagadec, Herve
    Martin, Philippe
    Geindre, Jean-Paul
    Audebert, Patrick
    OPTICS LETTERS, 2007, 32 (03) : 310 - 312
  • [48] Plasma volume holograms for focusing and mode conversion of ultraintense laser pulses
    Lehmann, G.
    Spatschek, K. H.
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [49] Direct particle acceleration by two identical crossed radially polarized laser beams
    Salamin, Yousef I.
    PHYSICAL REVIEW A, 2010, 82 (01):
  • [50] Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses
    Bulanov, Stepan S.
    Brantov, Andrei
    Bychenkov, Valery Yu.
    Chvykov, Vladimir
    Kalinchenko, Galina
    Matsuoka, Takeshi
    Rousseau, Pascal
    Reed, Stephen
    Yanovsky, Victor
    Krushelnick, Karl
    Litzenberg, Dale William
    Maksimchuk, Anatoly
    MEDICAL PHYSICS, 2008, 35 (05) : 1770 - 1776