Inclusion of Population-specific Reference Panel from India to the 1000 Genomes Phase 3 Panel Improves Imputation Accuracy

被引:0
|
作者
Meraj Ahmad
Anubhav Sinha
Sreya Ghosh
Vikrant Kumar
Sonia Davila
Chittaranjan S. Yajnik
Giriraj R. Chandak
机构
[1] CSIR-Centre for Cellular and Molecular Biology,Genomic Research on Complex diseases (GRC Group)
[2] Duke-NUS Medical School,Diabetes Unit
[3] SingHealth Duke-NUS Institute of Precision Medicine (PRISM),undefined
[4] King Edward Memorial Hospital and Research Centre,undefined
[5] Rasta Peth,undefined
[6] #5/1,undefined
[7] 4th cross,undefined
[8] Manjunatha Layout,undefined
来源
Scientific Reports | / 7卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Imputation is a computational method based on the principle of haplotype sharing allowing enrichment of genome-wide association study datasets. It depends on the haplotype structure of the population and density of the genotype data. The 1000 Genomes Project led to the generation of imputation reference panels which have been used globally. However, recent studies have shown that population-specific panels provide better enrichment of genome-wide variants. We compared the imputation accuracy using 1000 Genomes phase 3 reference panel and a panel generated from genome-wide data on 407 individuals from Western India (WIP). The concordance of imputed variants was cross-checked with next-generation re-sequencing data on a subset of genomic regions. Further, using the genome-wide data from 1880 individuals, we demonstrate that WIP works better than the 1000 Genomes phase 3 panel and when merged with it, significantly improves the imputation accuracy throughout the minor allele frequency range. We also show that imputation using only South Asian component of the 1000 Genomes phase 3 panel works as good as the merged panel, making it computationally less intensive job. Thus, our study stresses that imputation accuracy using 1000 Genomes phase 3 panel can be further improved by including population-specific reference panels from South Asia.
引用
收藏
相关论文
共 34 条
  • [21] A diverse ancestrally-matched reference panel increases genotype imputation accuracy in a underrepresented population
    Mauleekoonphairoj, John
    Tongsima, Sissades
    Khongphatthanayothin, Apichai
    Jurgens, Sean J.
    Zimmerman, Dominic S.
    Sutjaporn, Boosamas
    Wandee, Pharawee
    Bezzina, Connie R.
    Nademanee, Koonlawee
    Poovorawan, Yong
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [22] A diverse ancestrally-matched reference panel increases genotype imputation accuracy in a underrepresented population
    John Mauleekoonphairoj
    Sissades Tongsima
    Apichai Khongphatthanayothin
    Sean J. Jurgens
    Dominic S. Zimmerman
    Boosamas Sutjaporn
    Pharawee Wandee
    Connie R. Bezzina
    Koonlawee Nademanee
    Yong Poovorawan
    Scientific Reports, 13 (1)
  • [23] Identification of new genetic associations to type 2 diabetes through accurate genotype imputation with 1000 Genomes reference panel
    Bonas, S.
    Sanchez, F.
    Mercader, J. M.
    Torrents, D.
    DIABETOLOGIA, 2013, 56 : S157 - S158
  • [24] A combined reference panel from the 1000 Genomes and UK10K projects improved rare variant imputation in European and Chinese samples
    Chou, Wen-Chi
    Zheng, Hou-Feng
    Cheng, Chia-Ho
    Yan, Han
    Wang, Li
    Han, Fang
    Richards, J. Brent
    Karasik, David
    Kiel, Douglas P.
    Hsu, Yi-Hsiang
    SCIENTIFIC REPORTS, 2016, 6
  • [25] A combined reference panel from the 1000 Genomes and UK10K projects improved rare variant imputation in European and Chinese samples
    Wen-Chi Chou
    Hou-Feng Zheng
    Chia-Ho Cheng
    Han Yan
    Li Wang
    Fang Han
    J. Brent Richards
    David Karasik
    Douglas P. Kiel
    Yi-Hsiang Hsu
    Scientific Reports, 6
  • [26] A population-specific reference panel empowers genetic studies of Anabaptist populations (vol 7, 6097, 2017)
    Hou, Liping
    Kember, Rachel L.
    Roach, Jared C.
    O'Connell, Jeffrey R.
    Craig, David W.
    Bucan, Maja
    Scott, William K.
    Pericak-Vance, Margaret
    Haines, Jonathan L.
    Crawford, Michael H.
    Shuldiner, Alan R.
    McMahon, Francis J.
    SCIENTIFIC REPORTS, 2018, 8
  • [27] Impact of Imputation, Reference Population Structure, and Single Nucleotide Polymorphism Panel Density on Accuracy of Genomic Evaluation in Purebred and Crossbred Populations
    Barjasteh, S.
    Dashab, G. R.
    Rokouei, M.
    Shariati, M.
    Valleh, M. Vafaye
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2021, 23 (01): : 27 - 40
  • [28] NARD: whole-genome reference panel of 1779 Northeast Asians improves imputation accuracy of rare and low-frequency variants
    Seong-Keun Yoo
    Chang-Uk Kim
    Hie Lim Kim
    Sungjae Kim
    Jong-Yeon Shin
    Namcheol Kim
    Joshua Sung Woo Yang
    Kwok-Wai Lo
    Belong Cho
    Fumihiko Matsuda
    Stephan C. Schuster
    Changhoon Kim
    Jong-Il Kim
    Jeong-Sun Seo
    Genome Medicine, 11
  • [29] NARD: whole-genome reference panel of 1779 Northeast Asians improves imputation accuracy of rare and low-frequency variants
    Yoo, Seong-Keun
    Kim, Chang-Uk
    Kim, Hie Lim
    Kim, Sungjae
    Shin, Jong-Yeon
    Kim, Namcheol
    Yang, Joshua Sung Woo
    Lo, Kwok-Wai
    Cho, Belong
    Matsuda, Fumihiko
    Schuster, Stephan C.
    Kim, Changhoon
    Kim, Jong-Il
    Seo, Jeong-Sun
    GENOME MEDICINE, 2019, 11 (01)
  • [30] Large-scale Genome-wide Association Meta-analysis Using Imputation from 2188-haplotype 1000 Genomes Reference Panel Identifies Novel Susceptibility Loci for Anthropometric and Glycemic Traits
    Magi, Reedik
    Horikoshi, Momoko
    Surakka, Ida
    Wiltshire, Steven
    Sarin, Antti-Pekka
    Mahajan, Anubha
    Marullo, Letizia
    Ferreira, Teresa
    Hagg, Sara
    Ried, Janina S.
    Winkler, Thomas
    Thorleifsson, Gudmar
    Tsernikova, Natalia
    Esko, Tonu
    Willenborg, Christina
    Nelson, Christopher P.
    Beekman, Marian
    Willems, Sara M.
    McCarthy, Mark I.
    Morris, Andrew P.
    Lindgren, Cecilia M.
    Ripatti, Samuli
    Prokopenko, Inga
    GENETIC EPIDEMIOLOGY, 2012, 36 (07) : 776 - 777