On Dimensional Regularization in the Yang–Mills Theory

被引:0
|
作者
Ivanov A.V. [1 ]
机构
[1] St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1007/s10958-019-04281-2
中图分类号
学科分类号
摘要
We suggest an asymptotic approach to renormalization in the case of dimensional regularization. As an example, the quantum Yang–Mills theory in the four-dimensional space-time is considered. A formula for the renormalized effective action is derived by using the asymptotic behavior of the bare coupling constant. Then we discuss the dimensional transmutation, the process of renormalization, and the properties of the coupling constant. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:862 / 869
页数:7
相关论文
共 50 条
  • [21] DUALITY AND CONFINEMENT IN 3 DIMENSIONAL YANG-MILLS THEORY
    DECARVALHO, CAA
    MARINO, EC
    MARQUES, GC
    DECASTRO, MG
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (18): : 4827 - 4843
  • [22] 2-DIMENSIONAL TOPOLOGICAL YANG-MILLS THEORY
    BRODA, B
    [J]. PHYSICS LETTERS B, 1990, 244 (3-4) : 444 - 449
  • [23] Regularization-independent gauge-invariant renormalization of the Yang-Mills theory
    Slavnov, AA
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 130 (01) : 1 - 10
  • [24] Four-Dimensional Yang–Mills Theory as a Deformation of Topological BF Theory
    A. S. Cattaneo
    P. Cotta-Ramusino
    F. Fucito
    M. Martellini
    M. Rinaldi
    A. Tanzini
    M. Zeni
    [J]. Communications in Mathematical Physics, 1998, 197 : 571 - 621
  • [25] PAULI-VILLARS REGULARIZATION AND THE LIGHT-FRONT HAMILTONIAN IN (2+1)-DIMENSIONAL YANG-MILLS THEORY
    Malyshev, M. Yu.
    Paston, S. A.
    Prokhvatilov, E. V.
    Zubov, R. A.
    Franke, V. A.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 184 (03) : 1314 - 1323
  • [26] Quantization of Yang—Mills Theory
    Sami I. Muslih
    Hosam A. El-Zalan
    Fawzy El-Sabaa
    [J]. International Journal of Theoretical Physics, 2000, 39 : 2495 - 2502
  • [27] ULTRAVIOLET BEHAVIOR IN 5-DIMENSIONAL YANG-MILLS THEORY
    KRASNIKOV, NV
    [J]. JETP LETTERS, 1990, 51 (01) : 4 - 6
  • [28] Matrix strings in two-dimensional Yang-Mills theory
    Kogan, II
    Szabo, RJ
    [J]. PHYSICS LETTERS B, 1997, 404 (3-4) : 276 - 284
  • [29] Symmetry defects and orbifolds of two-dimensional Yang–Mills theory
    Lukas Müller
    Richard J. Szabo
    Lóránt Szegedy
    [J]. Letters in Mathematical Physics, 2022, 112
  • [30] Hyperbolic Lattices and Two-Dimensional Yang-Mills Theory
    Shankar, G.
    Maciejko, Joseph
    [J]. Physical Review Letters, 2024, 133 (14)