On the Outer Independent Total Double Roman Domination in Graphs

被引:0
|
作者
H. Abdollahzadeh Ahangar
M. Chellali
S. M. Sheikholeslami
J. C. Valenzuela-Tripodoro
机构
[1] Babol Noshirvani University of Technology,Department of Mathematics
[2] University of Blida,LAMDA
[3] Azarbaijan Shahid Madani University,RO Laboratory, Department of Mathematics
[4] University of Cádiz,Department of Mathematics
来源
关键词
(Total) double Roman domination; outer independent (total) double Roman domination; 05C69; 05C05;
D O I
暂无
中图分类号
学科分类号
摘要
A double Roman dominating function (DRDF) on a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} is a function f:V→{0,1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V\rightarrow \{0,1,2,3\}$$\end{document} satisfying (i) if f(v)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=0$$\end{document}, then there must be at least two neighbors assigned 2 under f or one neighbor w with f(w)=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)=3$$\end{document}; and (ii) if f(v)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=1$$\end{document} then v must be adjacent to a vertex w, such that f(w)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)\ge 2$$\end{document}. A DRDF is an outer independent total double Roman dominating function (OITDRDF) on G if the set of vertices labeled 0 induces an edgeless subgraph and the subgraph induced by the vertices with a non-zero label has no isolated vertices. The weight of an OITDRDF is the sum of its function values over all vertices, and the outer independent total Roman dominating number γtdRoi(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{tdR}^{oi}(G)$$\end{document} is the minimum weight of an OITDRDF on G. First, we show that the problem of determining γtdRoi(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{tdR}^{oi}(G)$$\end{document} is NP-complete for bipartite and chordal graphs. Then, we show that it is solvable in linear time when we are restricting to bounded clique-width graphs. Moreover, we present some tight bounds on γtdRoi(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{tdR}^{oi}(G)$$\end{document} as well as the exact values for several graph families.
引用
收藏
相关论文
共 50 条
  • [41] Properties of independent Roman domination in graphs
    Adabi, M.
    Targhi, E. Ebrahimi
    Rad, N. Jafari
    Moradi, M. Saied
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 52 : 11 - 18
  • [42] Independent Roman {2}-domination in graphs
    Rahmouni, Abdelkader
    Chellali, Mustapha
    [J]. DISCRETE APPLIED MATHEMATICS, 2018, 236 : 408 - 414
  • [43] Bounds for independent Roman domination in graphs
    Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
    不详
    不详
    [J]. J. Comb. Math. Comb. Comp., (351-365):
  • [44] Computational Complexity of Outer-Independent Total and Total Roman Domination Numbers in Trees
    Li, Zepeng
    Shao, Zehui
    Lang, Fangnian
    Zhang, Xiaosong
    Liu, Jia-Bao
    [J]. IEEE ACCESS, 2018, 6 : 35544 - 35550
  • [45] 1-MOVABLE DOUBLE OUTER-INDEPENDENT DOMINATION IN GRAPHS
    Anore, Marry Ann E.
    Hinampas, Jocecar L.
    Hinampas Jr, Renario G.
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2023, 40 (01): : 43 - 55
  • [46] Roman domination and independent Roman domination on graphs with maximum degree three
    Luiz, Atilio G.
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 348 : 260 - 278
  • [47] Total Roman domination and total domination in unit disk graphs
    Rout, Sasmita
    Mishra, Pawan Kumar
    Das, Gautam Kumar
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [48] On the Total Double Roman Domination
    Shao, Zehui
    Amjadi, Jafar
    Sheikholeslami, Seyed Mahmoud
    Valinavaz, Mina
    [J]. IEEE ACCESS, 2019, 7 : 52035 - 52041
  • [49] Hop total Roman domination in graphs
    Abdollahzadeh Ahangar, H.
    Chellali, M.
    Sheikholeslami, S. M.
    Soroudi, M.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (01) : 73 - 78
  • [50] On the total Roman domination stability in graphs
    Asemian, Ghazale
    Jafari Rad, Nader
    Tehranian, Abolfazl
    Rasouli, Hamid
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2021, 18 (03) : 166 - 172