On a Cauchy Problem in Banach Spaces

被引:0
|
作者
Lixin Cheng
Wen Zhang
机构
[1] Xiamen University,School of Mathematical Sciences
来源
Results in Mathematics | 2023年 / 78卷
关键词
Ordinary differential equations in abstract spaces; Cauchy initial problem; Ascoli–Arzelà theorem; Tychonoff’s fixed point theorem; weak topology; unconditional basis; Banach space; 34G20; 46A50; 34A12; 46N20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider solvability of the Cauchy initial problem dx/dt=f(t,x),x(0)=x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dx/{dt}=f(t,x),\; x(0)=x_0$$\end{document} in a Banach space X. As a result, we generalize Peano’s existence theorem in the following manner: For every Banach space X, the problem always has a solution x∈C1([0,a],X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in C^1([0,a],X)$$\end{document} for all a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>0$$\end{document} under the assumption that f:R+⊕X→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:{\mathbb {R}}^+\oplus X\rightarrow X$$\end{document} is weak-to-weak continuous on some bounded set with a relatively weakly compact range. We also show that for any infinite dimensional reflexive Banach space X with an unconditional basis, in particular, ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _p$$\end{document} and Lp(Ω,∑,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p(\Omega ,\sum ,\mu )$$\end{document} (1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document} and (Ω,∑,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Omega ,\sum ,\mu )$$\end{document} is σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-finite), and for all a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>0$$\end{document} there is a bounded nowhere locally Lipschitz function f:R+⊕X→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:{\mathbb {R}}^+\oplus X\rightarrow X$$\end{document} which is weak-to-weak continuous on some bounded set so that the Cauchy initial problem has a solution x∈C1([0,a],X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in C^1([0,a],X)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Atomic Solution of Fractional Abstract Cauchy Problem of High Order in Banach Spaces
    Bekraoui, Fatema
    Al Horani, Mohammad
    Khalil, Roshdi
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (01): : 106 - 125
  • [32] Nonlocal Cauchy problem for delay integrodifferential equations of Sobolev type in Banach spaces
    Balachandran, K
    Park, JY
    Chandrasekaran, M
    [J]. APPLIED MATHEMATICS LETTERS, 2002, 15 (07) : 845 - 854
  • [33] Nonlocal cauchy problem for second order integrodifferential evolution equations in banach spaces
    Balachandran, K.
    Kim, J. -H.
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (05): : 1343 - 1357
  • [34] Nonlocal Cauchy Problem via a Fractional Operator Involving Power Kernel in Banach Spaces
    Keten, Aysegul
    Yavuz, Mehmet
    Baleanu, Dumitru
    [J]. FRACTAL AND FRACTIONAL, 2019, 3 (02) : 1 - 8
  • [35] Vector-valued measures of noncompactness and the Cauchy problem with delay in a scale of Banach spaces
    Bich, Huy Nguyen
    Van, Hien Pham
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (02)
  • [36] Periodicity of solutions to the Cauchy problem for nonautonomous impulsive delay evolution equations in Banach spaces
    Liang, Jin
    Liu, James H.
    Xiao, Ti-Jun
    Xu, Hong-Kun
    [J]. ANALYSIS AND APPLICATIONS, 2017, 15 (04) : 457 - 475
  • [37] Vector-valued measures of noncompactness and the Cauchy problem with delay in a scale of Banach spaces
    Huy Nguyen Bich
    Hien Pham Van
    [J]. Journal of Fixed Point Theory and Applications, 2020, 22
  • [38] A second-order Cauchy problem in a scale of Banach spaces and application to Kirchhoff equations
    Huy, NB
    Sum, NA
    Tuan, NA
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 206 (01) : 253 - 264
  • [39] Nonlinear nonlocal Cauchy problems in Banach spaces
    Aizicovici, S
    Lee, H
    [J]. APPLIED MATHEMATICS LETTERS, 2005, 18 (04) : 401 - 407
  • [40] CARATHEODORY TYPE CAUCHY PROBLEMS IN BANACH SPACES
    崔长军
    [J]. Annals of Applied Mathematics, 1995, (01) : 37 - 45