Collocation methods for general Riemann-Liouville two-point boundary value problems

被引:0
|
作者
Hui Liang
Martin Stynes
机构
[1] Shenzhen University,College of Mathematics and Statistics
[2] Beijing Computational Science Research Center,undefined
来源
关键词
Fractional derivative; Riemann-Liouville derivative; Two-point boundary value problem; Volterra integral equation; Collocation methods; 65L10; 65R10; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
General Riemann-Liouville linear two-point boundary value problems of order αp, where n − 1 < αp < n for some positive integer n, are investigated on the interval [0,b]. It is shown first that the natural degree of regularity to impose on the solution y of the problem is y∈Cn−2[0,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y\in C^{n-2}[0,b]$\end{document} and Dαp−1y∈C[0,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha _{p}-1}y\in C[0,b]$\end{document}, with further restrictions on the behavior of the derivatives of y(n− 2) (these regularity conditions differ significantly from the natural regularity conditions in the corresponding Caputo problem). From this regularity, it is deduced that the most general choice of boundary conditions possible is y(0)=y′(0)=…=y(n−2)(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y(0) = y^{\prime }(0) = {\dots } = y^{(n-2)}(0) = 0$\end{document} and ∑j=0n1βjy(j)(b1)=γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\sum }_{j = 0}^{n_{1}}\beta _{j}y^{(j)}(b_{1}) =\gamma $\end{document} for some constants βj and γ, with b1 ∈ (0,b] and n1∈{0,1,…,n−1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n_{1}\in \{0, 1, \dots , n-1\}$\end{document}. A wide class of transformations of the problem into weakly singular Volterra integral equations (VIEs) is then investigated; the aim is to choose the transformation that will yield the most accurate results when the VIE is solved using a collocation method with piecewise polynomials. Error estimates are derived for this method and for its iterated variant. Numerical results are given to support the theoretical conclusions.
引用
收藏
页码:897 / 928
页数:31
相关论文
共 50 条
  • [21] Convergence analysis of a finite difference scheme for a Riemann-Liouville fractional derivative two-point boundary value problem on an adaptive grid
    Liu, Li-Bin
    Liang, Zhifang
    Long, Guangqing
    Liang, Ying
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 375
  • [22] Multi-point boundary value problems for a class of Riemann-Liouville fractional differential equations
    Bingxian Li
    Shurong Sun
    Yanan Li
    Ping Zhao
    Advances in Difference Equations, 2014
  • [23] Boundary value problems with four orders of Riemann-Liouville fractional derivatives
    Niyom, Somboon
    Ntouyas, Sotiris K.
    Laoprasittichok, Sorasak
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [24] Boundary value problems with four orders of Riemann-Liouville fractional derivatives
    Somboon Niyom
    Sotiris K Ntouyas
    Sorasak Laoprasittichok
    Jessada Tariboon
    Advances in Difference Equations, 2016
  • [25] Positive solutions for some Riemann-Liouville fractional boundary value problems
    Bachar, Imed
    Maagli, Habib
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (07): : 5093 - 5106
  • [26] A study of Riemann-Liouville fractional nonlocal integral boundary value problems
    Ahmad, Bashir
    Alsaedi, Ahmed
    Assolami, Afrah
    Agarwal, Ravi P.
    BOUNDARY VALUE PROBLEMS, 2013,
  • [27] QUASILINEARIZATION AND BOUNDARY VALUE PROBLEMS FOR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS
    Eloe, Paul W.
    Jonnalagadda, Jaganmohan
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [28] A study of Riemann-Liouville fractional nonlocal integral boundary value problems
    Bashir Ahmad
    Ahmed Alsaedi
    Afrah Assolami
    Ravi P Agarwal
    Boundary Value Problems, 2013
  • [29] Boundary value problems for a new class of three-point nonlocal Riemann-Liouville integral boundary conditions
    Jessada Tariboon
    Thanin Sitthiwirattham
    Sotiris K Ntouyas
    Advances in Difference Equations, 2013
  • [30] Boundary value problems for a new class of three-point nonlocal Riemann-Liouville integral boundary conditions
    Tariboon, Jessada
    Sitthiwirattham, Thanin
    Ntouyas, Sotiris K.
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,