Fractional Non-linear Regularity, Potential and Balayage

被引:0
|
作者
Shaoguang Shi
Lei Zhang
Guanglan Wang
机构
[1] Linyi University,School of Mathematics and Statistics
来源
关键词
Fractional harmonic function; Fractional capacity; Fractional Sobolev space; Weak solution; Primary 31B15; 31C05; Secondary 31B35; 35R11; 35D30;
D O I
暂无
中图分类号
学科分类号
摘要
This paper utilizes the (0,1)×(1,n/α)∋(α,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,1)\times (1,n/\alpha )\ni (\alpha ,p)$$\end{document}-Sobolev spaces on the n-dimensional Euclidean bounded domains and their relative capacities to investigate the fractional non-linear regularity, potential and balayage problems.
引用
收藏
相关论文
共 50 条
  • [31] Regularity of fully non-linear elliptic equations on Kahler cones
    Yuan, Rirong
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2020, 16 (05) : 1609 - 1641
  • [32] Non-linear Mittag-Leffler stabilisation of commensurate fractional-order non-linear systems
    Ding, Dongsheng
    Qi, Donglian
    Wang, Qiao
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (05): : 681 - 690
  • [33] Eigenvalues in non-linear potential theory
    Rhouma, NB
    Mosbah, M
    [J]. POTENTIAL ANALYSIS, 2001, 14 (03) : 289 - 300
  • [34] AXIOMATIC NON-LINEAR POTENTIAL THEORIES
    LAINE, I
    [J]. LECTURE NOTES IN MATHEMATICS, 1988, 1344 : 118 - 132
  • [35] Eigenvalues in Non-Linear Potential Theory
    Belhaj Rhouma N.
    Mosbah M.
    [J]. Potential Analysis, 2001, 14 (3) : 289 - 300
  • [36] Aspects of Potential Theory on Manifolds, Linear and Non-linear
    Stefano Pigola
    Marco Rigoli
    Alberto G. Setti
    [J]. Milan Journal of Mathematics, 2008, 76 : 229 - 256
  • [37] Aspects of Potential Theory on Manifolds, Linear and Non-linear
    Pigola, Stefano
    Rigoli, Marco
    Setti, Alberto G.
    [J]. MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) : 229 - 256
  • [38] Fractional Velocity as a Tool for the Study of Non-Linear Problems
    Prodanov, Dimiter
    [J]. FRACTAL AND FRACTIONAL, 2018, 2 (01) : 1 - 23
  • [39] ON A DISCRETE NON-LINEAR FRACTIONAL-PROGRAMMING PROBLEM
    SAXENA, VPPC
    PARKASH, O
    [J]. NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1980, 3 (07): : 204 - 205
  • [40] Uniqueness of non-linear ground states for fractional Laplacians in
    Frank, Rupert L.
    Lenzmann, Enno
    [J]. ACTA MATHEMATICA, 2013, 210 (02) : 261 - 318