Bifurcation and vibration resonance in the time delay Duffing system with fractional internal and external damping

被引:0
|
作者
RenMing Wang
HongMing Zhang
YunNing Zhang
机构
[1] China Three Gorges University,College of Electrical Engineering and New Energy
来源
Meccanica | 2022年 / 57卷
关键词
Duffing system; Time delay; Fractional double-damped; Bifurcation; Vibration resonance;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is focused on investigating the bifurcation and vibration resonance problems of fractional double-damping Duffing time delay system driven by external excitation signal with two wildly different frequencies ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. Firstly, the approximate expressions of the critical bifurcation point and response amplitude Q at low-frequency ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} are obtained by means of the direct separation of the slow and fast motions. And then corresponding numerical simulation is made to show that it is a good agreement with the theoretical analysis. Next, the influence of system parameters, including internal damping order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, external damping order λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, high-frequency amplitude F, and time delay size τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, on the vibration resonance is discussed. Some significant results are obtained. If the fractional orders α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} are treated as a control parameter, then α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} can induce vibration resonance of the system in three different types when the response amplitude Q changes with the high-frequency amplitude F. If the high-frequency amplitude F is treated as a control parameter, then F can induce vibration resonance of the system as well at some particular points. If the time delay τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is treated as a control parameter, not only can τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} induce three types of vibration resonance, but the response amplitude Q views periodically with τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. In addition, the resonance behaviors of the considered system are more abundant than those in other similar systems since the internal damping order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, external damping order λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, time delay τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} and cubic term coefficient β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} are introduced into the system which changes the shapes of the effective potential function.
引用
收藏
页码:999 / 1015
页数:16
相关论文
共 50 条
  • [21] Damping efficiency of the Duffing system with additional fractional terms
    Rysaka, A.
    Sedlmayr, M.
    APPLIED MATHEMATICAL MODELLING, 2022, 111 : 521 - 533
  • [22] Pitchfork bifurcation and vibrational resonance in a fractional-order Duffing oscillator
    J H YANG
    M A F SANJUÁN
    W XIANG
    H ZHU
    Pramana, 2013, 81 : 943 - 957
  • [23] Pitchfork bifurcation and vibrational resonance in a fractional-order Duffing oscillator
    Yang, J. H.
    Sanjuan, M. A. F.
    Xiang, W.
    Zhu, H.
    PRAMANA-JOURNAL OF PHYSICS, 2013, 81 (06): : 943 - 957
  • [24] INFLUENCE OF FRACTIONAL DAMPING AND TIME DELAY ON MAXWELL-VOIGT MODEL FOR VIBRATION ISOLATION
    Kaul, Sudhir
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2016, VOL. 4B, 2017,
  • [25] Bifurcation and normal form of parametrically excited duffing system with quadratic damping
    Yabuno, H
    Ishitani, M
    Aoshima, N
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2001, 8 (04): : 627 - 638
  • [26] Discretization of forced Duffing system with fractional-order damping
    El-Sayed, Ahmedma
    El-Raheem, Zaki F. E.
    Salman, Sanaa M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [27] Discretization of forced Duffing system with fractional-order damping
    Ahmed MA El-Sayed
    Zaki FE El-Raheem
    Sanaa M Salman
    Advances in Difference Equations, 2014
  • [28] Chaos and bifurcation of Mathieu-Duffing system with square damping term
    Xie J.
    Wang H.
    Shi W.
    Zhang J.
    Huo Y.
    Cao J.
    Gao Q.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (07): : 168 - 174and195
  • [29] Fractional-order harmonic resonance in a multi-frequency excited fractional Duffing oscillator with distributed time delay
    Yan, Zhi
    Liu, Xianbin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 97
  • [30] Resonance and bifurcation in a nonlinear Duffing system with cubic coupled terms
    Xu, Wei
    Li, Ruihong
    Li, Shuang
    NONLINEAR DYNAMICS, 2006, 46 (1-2) : 211 - 221