Bifurcation and vibration resonance in the time delay Duffing system with fractional internal and external damping

被引:0
|
作者
RenMing Wang
HongMing Zhang
YunNing Zhang
机构
[1] China Three Gorges University,College of Electrical Engineering and New Energy
来源
Meccanica | 2022年 / 57卷
关键词
Duffing system; Time delay; Fractional double-damped; Bifurcation; Vibration resonance;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is focused on investigating the bifurcation and vibration resonance problems of fractional double-damping Duffing time delay system driven by external excitation signal with two wildly different frequencies ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. Firstly, the approximate expressions of the critical bifurcation point and response amplitude Q at low-frequency ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} are obtained by means of the direct separation of the slow and fast motions. And then corresponding numerical simulation is made to show that it is a good agreement with the theoretical analysis. Next, the influence of system parameters, including internal damping order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, external damping order λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, high-frequency amplitude F, and time delay size τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, on the vibration resonance is discussed. Some significant results are obtained. If the fractional orders α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} are treated as a control parameter, then α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} can induce vibration resonance of the system in three different types when the response amplitude Q changes with the high-frequency amplitude F. If the high-frequency amplitude F is treated as a control parameter, then F can induce vibration resonance of the system as well at some particular points. If the time delay τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is treated as a control parameter, not only can τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} induce three types of vibration resonance, but the response amplitude Q views periodically with τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. In addition, the resonance behaviors of the considered system are more abundant than those in other similar systems since the internal damping order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, external damping order λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, time delay τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} and cubic term coefficient β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} are introduced into the system which changes the shapes of the effective potential function.
引用
收藏
页码:999 / 1015
页数:16
相关论文
共 50 条
  • [1] Bifurcation and vibration resonance in the time delay Duffing system with fractional internal and external damping
    Wang, RenMing
    Zhang, HongMing
    Zhang, YunNing
    MECCANICA, 2022, 57 (05) : 999 - 1015
  • [2] Bifurcation and resonance induced by fractional-order damping and time delay feedback in a Duffing system
    Yang, J. H.
    Zhu, H.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (05) : 1316 - 1326
  • [3] Vibration resonance and fork bifurcation of under-damped Duffing system with fractional and linear delay terms
    Xie, Jiaquan
    Guo, Rong
    Ren, Zhongkai
    He, Dongping
    Xu, Huidong
    NONLINEAR DYNAMICS, 2023, 111 (12) : 10981 - 10999
  • [4] Vibration resonance and fork bifurcation of under-damped Duffing system with fractional and linear delay terms
    Jiaquan Xie
    Rong Guo
    Zhongkai Ren
    Dongping He
    Huidong Xu
    Nonlinear Dynamics, 2023, 111 : 10981 - 10999
  • [5] Static bifurcation and vibrational resonance in an asymmetric fractional-order delay Duffing system
    Li, Ruihong
    Li, Jun
    Huang, Dongmei
    PHYSICA SCRIPTA, 2021, 96 (08)
  • [6] Bifurcation and Chaotic Behavior of Duffing System with Fractional-Order Derivative and Time Delay
    Wang, Cuiyan
    Wang, Meiqi
    Xing, Wuce
    Shi, Shaoxuan
    FRACTAL AND FRACTIONAL, 2023, 7 (08)
  • [7] Resonance and bifurcation of fractional quintic Mathieu-Duffing system
    Zhang, Jiale
    Xie, Jiaquan
    Shi, Wei
    Huo, Yiting
    Ren, Zhongkai
    He, Dongping
    CHAOS, 2023, 33 (02)
  • [8] Analysis of resonance and bifurcation in a fractional order nonlinear Duffing system
    Bai, Xueting
    Yang, Qinle
    Xie, Jiaquan
    Chen, Lei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (05) : 5160 - 5175
  • [9] Vibration of the Duffing oscillator: Effect of fractional damping
    Borowiec, Marek
    Litak, Grzegorz
    Syta, Arkadiusz
    SHOCK AND VIBRATION, 2007, 14 (01) : 29 - 36
  • [10] Vibrational resonance and bifurcation in a fractional order quintic system with distributed time delay
    Ning, Lijuan
    Zhao, Keya
    PHYSICA SCRIPTA, 2022, 97 (05)