Carbohydrate and Proline Contents in Leaves, Roots, and Apices of Salt-Tolerant and Salt-Sensitive Wheat Cultivars1

被引:42
|
作者
M. Kafi [1 ]
W. S. Stewart [2 ]
A. M. Borland [1 ]
机构
[1] Ferdowsi University,Department of Agronomy
[2] University of Newcastle Upon Tyne,Department of Agricultural and Environmental Sciences
关键词
Triticum aestivum; salinity; soluble carbohydrates; proline;
D O I
10.1023/A:1022956727141
中图分类号
学科分类号
摘要
Intra-specific variations in nonstructural carbohydrates and free proline were determined in leaves, apices, roots, and maturing seeds of two salt-tolerant cultivars (CR and Kharchia-65) and one salt-sensitive cv. Ghods of spring wheat (Triticum aestivum L.) grown in sand culture at various levels of salinity (0, 100, 200, and 300 mM NaCl and CaCl2 at 5 : 1 molar ratio) under controlled environmental conditions. The levels of leaf, apex, and root ethanol-soluble carbohydrates, fructans, starch, and proline increased in line with elevating level of salinity in all three cultivars under investigation. The contents of proline, soluble and insoluble carbohydrates in the apex increased to levels exceeding those in the leaves and roots. Soluble carbohydrate content of salt-sensitive cv. Ghods was higher in the leaves, apices, and roots and lower in the maturing seeds than in the other cultivars at all levels of salinity except at 300 mM. The results show considerable variation in the amount of soluble, insoluble sugars, and proline among plant tissues and wheat genotypes in response to salinity. Higher soluble carbohydrates and fructan in leaves, roots and maturing seeds of stressed plants indicate that their accumulation may help plant to tolerate salinity. Salt-sensitive cv. Ghods accumulated less soluble sugars in the maturing seeds and higher soluble sugars in the apices, which might be used as an indicator in screening wheat genotypes for salinity tolerance.
引用
收藏
页码:155 / 162
页数:7
相关论文
共 50 条
  • [31] Different Root Anatomical Changes in Salt-tolerant and Salt-sensitive Foxtail Millet Genotypes
    Karjunita, Nike
    Khumaida, Nurul
    Ardie, Sintho Wahyuning
    AGRIVITA, 2019, 41 (01): : 88 - 96
  • [32] Differences in responses of moderately salt-tolerant and salt-sensitive tree species to heterogeneous salinity
    Feng, X. H.
    An, P.
    Guo, K.
    Li, X. G.
    Liu, X. J.
    BIOLOGIA PLANTARUM, 2018, 62 (03) : 589 - 594
  • [33] Effects of salt stress on root plasma membrane characteristics of salt-tolerant and salt-sensitive buffalograss clones
    Lin, H
    Wu, L
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 1996, 36 (03) : 239 - +
  • [34] Effect of NaCl on ammonium and nitrate uptake and transport in salt-tolerant and salt-sensitive poplars
    Liu, Jian
    Li, Jing
    Deng, Chen
    Liu, Zhe
    Yin, Kexin
    Zhang, Ying
    Zhao, Ziyan
    Zhao, Rui
    Zhao, Nan
    Zhou, Xiaoyang
    Chen, Shaoliang
    TREE PHYSIOLOGY, 2024, 44 (03)
  • [36] Growth and physiological response of salt-sensitive and salt-tolerant rootstocks of citrus to paclobutrazol under salt stress
    Dubey, A. K.
    Srivastav, Manish
    Singh, A. K.
    Pandey, R. N.
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2009, 79 (08): : 595 - 599
  • [37] Growth response of the salt-sensitive and the salt-tolerant sugarcane genotypes to potassium nutrition under salt stress
    Ashraf, Muhammad
    Afzal, Muhammad
    Ahmad, Rashid
    Maqsood, Muhammad A.
    Shahzad, Sher M.
    Tahir, Mukkram A.
    Akhtar, Naeem
    Aziz, Ahsan
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2012, 58 (04) : 385 - 398
  • [38] RESPONSES OF SALT-TOLERANT AND SALT-SENSITIVE LINES OF SAFFLOWER (CARTHAMUS-TINCTORIUS L) TO SALT STRESS
    ASHRAF, M
    FATIMA, H
    ACTA PHYSIOLOGIAE PLANTARUM, 1995, 17 (01) : 61 - 70
  • [39] Differential Physiological Responses to Salt Stress between Salt-Sensitive and Salt-Tolerant japonica Rice Cultivars at the Post-Germination and Seedling Stages
    Ye, Shenghai
    Huang, Zhibo
    Zhao, Guibin
    Zhai, Rongrong
    Ye, Jing
    Wu, Mingming
    Yu, Faming
    Zhu, Guofu
    Zhang, Xiaoming
    PLANTS-BASEL, 2021, 10 (11):
  • [40] Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars
    Kang, DJ
    Seo, YJ
    Lee, JD
    Ishii, R
    Kim, KU
    Shin, DH
    Park, SK
    Jang, SW
    Lee, IJ
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2005, 191 (04) : 273 - 282