Unified convergence analysis for Picard iteration in n-dimensional vector spaces

被引:0
|
作者
Petko D. Proinov
机构
[1] University of Plovdiv Paisii Hilendarski,Faculty of Mathematics and Informatics
来源
Calcolo | 2018年 / 55卷
关键词
Picard iteration; Successive approximations; Local convergence; Semilocal convergence; Error estimates; Newton method; 65J15; 47J25; 47H10; 54H25; 65H05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we provide three types of general convergence theorems for Picard iteration in n-dimensional vector spaces over a valued field. These theorems can be used as tools to study the convergence of some particular Picard-type iterative methods. As an application, we present a new semilocal convergence theorem for the one-dimensional Newton method for approximating all the zeros of a polynomial simultaneously. This result improves in several directions the previous one given by Batra (BIT Numer Math 42:467–476, 2002).
引用
收藏
相关论文
共 50 条
  • [1] Unified convergence analysis for Picard iteration in n-dimensional vector spaces
    Proinov, Petko D.
    [J]. CALCOLO, 2018, 55 (01) : 1 - 21
  • [2] N-Dimensional Binary Vector Spaces
    Arai, Kenichi
    Okazaki, Hiroyuki
    [J]. FORMALIZED MATHEMATICS, 2013, 21 (02): : 75 - 81
  • [3] Artificial Vector Fields for Robot Convergence and Circulation of Time-Varying Curves in N-dimensional Spaces
    Goncalves, Vinicius M.
    Pimenta, Luciano C. A.
    Maia, Carlos A.
    Pereira, Guilherme A. S.
    [J]. 2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 2012 - 2017
  • [4] On the Explicit Determination of the Polar Decomposition in n-Dimensional Vector Spaces
    C.S. Jog
    [J]. Journal of elasticity and the physical science of solids, 2002, 66 : 159 - 169
  • [5] On the explicit determination of the polar decomposition in n-dimensional vector spaces
    Jog, CS
    [J]. JOURNAL OF ELASTICITY, 2002, 66 (02) : 159 - 169
  • [6] A geometric approach for partitioning N-dimensional non-rectangular iteration spaces
    Kejariwal, A
    D'Alberto, P
    Nicolau, A
    Polychronopoulos, CD
    [J]. LANGUAGES AND COMPILERS FOR HIGH PERFORMANCE COMPUTING, 2005, 3602 : 102 - 116
  • [7] SUBDIVISIONS OF N-DIMENSIONAL SPACES AND N-DIMENSIONAL GENERALIZED MAPS
    LIENHARDT, P
    [J]. PROCEEDINGS OF THE FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY, 1989, : 228 - 236
  • [8] Derivatives of the Stretch, Rotation and Exponential Tensors in n-Dimensional Vector Spaces
    C. S. Jog
    [J]. Journal of Elasticity, 2006, 82
  • [9] Derivatives of the stretch, rotation and exponential tensors in n-dimensional vector spaces
    Jog, CS
    [J]. JOURNAL OF ELASTICITY, 2006, 82 (02) : 175 - 192
  • [10] MOSAICS OF N-DIMENSIONAL SPACES
    MOLNAR, E
    [J]. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1971, 51 (3-4): : 177 - &