On the explicit determination of the polar decomposition in n-dimensional vector spaces

被引:13
|
作者
Jog, CS [1 ]
机构
[1] Indian Inst Sci, Dept Mech Engn, Bangalore 560012, Karnataka, India
关键词
polar decomposition; square roots of tensors; explicit determination;
D O I
10.1023/A:1021253906202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A method for the explicit determination of the polar decomposition (and the related problem of finding tensor square roots) when the underlying vector space dimension n is arbitrary (but finite), is proposed. The method uses the spectral resolution, and avoids the determination of eigenvectors when the tensor is invertible. For any given dimension n, an appropriately constructed van der Monde matrix is shown to play a key role in the construction of each of the component matrices (and their inverses) in the polar decomposition.
引用
收藏
页码:159 / 169
页数:11
相关论文
共 50 条
  • [1] On the Explicit Determination of the Polar Decomposition in n-Dimensional Vector Spaces
    C.S. Jog
    [J]. Journal of elasticity and the physical science of solids, 2002, 66 : 159 - 169
  • [2] N-Dimensional Binary Vector Spaces
    Arai, Kenichi
    Okazaki, Hiroyuki
    [J]. FORMALIZED MATHEMATICS, 2013, 21 (02): : 75 - 81
  • [3] N-Dimensional Polar FSK
    Balakrishnan, Biju
    Ransing, Snehal
    Rathore, Ayushi
    Sapale, Darshana
    PriyaSingh
    [J]. 2017 INTERNATIONAL CONFERENCE ON COMPUTATION OF POWER, ENERGY INFORMATION AND COMMUNICATION (ICCPEIC), 2017, : 18 - 22
  • [4] SUBDIVISIONS OF N-DIMENSIONAL SPACES AND N-DIMENSIONAL GENERALIZED MAPS
    LIENHARDT, P
    [J]. PROCEEDINGS OF THE FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY, 1989, : 228 - 236
  • [5] Unified convergence analysis for Picard iteration in n-dimensional vector spaces
    Petko D. Proinov
    [J]. Calcolo, 2018, 55
  • [6] Derivatives of the Stretch, Rotation and Exponential Tensors in n-Dimensional Vector Spaces
    C. S. Jog
    [J]. Journal of Elasticity, 2006, 82
  • [7] Derivatives of the stretch, rotation and exponential tensors in n-dimensional vector spaces
    Jog, CS
    [J]. JOURNAL OF ELASTICITY, 2006, 82 (02) : 175 - 192
  • [8] MOSAICS OF N-DIMENSIONAL SPACES
    MOLNAR, E
    [J]. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1971, 51 (3-4): : 177 - &
  • [9] N-DIMENSIONAL PACKING SPACES
    MALEEV, AV
    [J]. KRISTALLOGRAFIYA, 1995, 40 (03): : 394 - 396
  • [10] Unified convergence analysis for Picard iteration in n-dimensional vector spaces
    Proinov, Petko D.
    [J]. CALCOLO, 2018, 55 (01) : 1 - 21