The Stress State of an Elastic Orthotropic Medium with an Ellipsoidal Cavity

被引:0
|
作者
V. S. Kirilyuk
机构
[1] National Academy of Sciences of Ukraine,S. P. Timoshenko Institute of Mechanics
来源
关键词
stress state; elastic space; orthotropic medium; ellipsoidal cavity; Fourier transform; Green function; perturbed state; stress concentration;
D O I
暂无
中图分类号
学科分类号
摘要
The stress-concentration problem for an elastic orthotropic medium containing an ellipsoidal cavity is solved. The stress state in the elastic space is represented as a superposition of the principal state and the perturbed state due to the cavity. The equivalent-inclusion method, the triple Fourier transform in spatial variables, and the Fourier-transformed Green function for an infinite medium are used. Double integrals over a finite domain are evaluated using the Gaussian quadrature formulas. The results for particular cases are compared with those obtained by other authors. The influence of the geometry of the cavity and the elastic properties of the material on stress concentration is studied
引用
收藏
页码:302 / 308
页数:6
相关论文
共 50 条
  • [21] Ellipsoidal inhomogeneity in elliptically orthotropic elastic solid
    Kushch, Volodymyr I.
    Sevostianov, Igor
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 206 : 282 - 291
  • [22] ELLIPSOIDAL INCLUSIONS IN AN ELASTIC MEDIUM
    ALAWNEH, AD
    SHAWAGFEH, NT
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1989, 20 (08): : 840 - 849
  • [23] ELLIPSOIDAL INHOMOGENEITY IN ELASTIC MEDIUM
    KUNIN, IA
    SOSNINA, EG
    [J]. DOKLADY AKADEMII NAUK SSSR, 1971, 199 (03): : 571 - &
  • [24] NUMERICAL-ANALYSIS OF THE NONLINEARLY ELASTIC STATE AROUND CUTOUTS IN ORTHOTROPIC ELLIPSOIDAL SHELLS
    GEORGIEVSKII, VP
    GUZ, AN
    MAKSIMYUK, VA
    CHERNYSHENKO, IS
    [J]. SOVIET APPLIED MECHANICS, 1989, 25 (12): : 1207 - 1212
  • [25] Stress State of an Orthotropic Piezoelectric Body with a Triaxial Ellipsoidal Inclusion Subject to Tension
    V. S. Kirilyuk
    O. I. Levchuk
    [J]. International Applied Mechanics, 2019, 55 : 305 - 310
  • [26] Stress State of an Orthotropic Piezoelectric Body with a Triaxial Ellipsoidal Inclusion Subject to Tension
    Kirilyuk, V. S.
    Levchuk, O. I.
    [J]. INTERNATIONAL APPLIED MECHANICS, 2019, 55 (03) : 305 - 310
  • [27] Elastic Fields for the Ellipsoidal Cavity Problem
    Bai-Xiang Xu
    Ying-Tao Zhao
    Min-Zhong Wang
    [J]. Journal of Elasticity, 2009, 97
  • [28] Elastic Fields for the Ellipsoidal Cavity Problem
    Xu, Bai-Xiang
    Zhao, Ying-Tao
    Wang, Min-Zhong
    [J]. JOURNAL OF ELASTICITY, 2009, 97 (01) : 31 - 45
  • [29] THE ANALYSIS OF AN ORTHOTROPIC ELLIPSOIDAL SHELL ON AN ELASTIC-FOUNDATION
    PALIWAL, DN
    GUPTA, R
    JAIN, A
    [J]. INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 1992, 51 (02) : 133 - 141
  • [30] EFFECT OF A CYLINDRICAL CAVITY ON STRESS DISTRIBUTION IN AN ELASTIC MEDIUM
    LEE, DS
    [J]. SIAM REVIEW, 1969, 11 (04) : 658 - &