On self-affine tiles that are homeomorphic to a ball

被引:0
|
作者
Jörg M. Thuswaldner
Shu-Qin Zhang
机构
[1] University of Leoben,Chair of Mathematics and Statistics
[2] Zhengzhou University,School of Mathematics and Statistics
来源
Science China Mathematics | 2024年 / 67卷
关键词
self-affine sets; tiles and tilings; low-dimensional topology; truncated octahedron; 28A80; 57M50; 51M20; 52C22; 54F65;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a 3 × 3 integer matrix which is expanding in the sense that each of its eigenvalues is greater than 1 in modulus and let D⊂ℤ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal D} \subset {\mathbb{Z}^3}$$\end{document} be a digit set containing |det M| elements. Then the unique nonempty compact set T=T(M,D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = T(M,{\cal D})$$\end{document} defined by the set equation MT=T+D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$MT = T + {\cal D}$$\end{document} is called an integral self-affine tile if its interior is nonempty. If D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal D}$$\end{document} is of the form D={0,v,…,(|detM|−1)v}0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal D} = \{ 0,v, \ldots ,(|\det M| - 1)v\} 0$$\end{document}, we say that T has a collinear digit set. The present paper is devoted to the topology of integral self-affine tiles with collinear digit sets. In particular, we prove that a large class of these tiles is homeomorphic to a closed 3-dimensional ball. Moreover, we show that in this case, T carries a natural CW complex structure that is defined in terms of the intersections of T with its neighbors in the lattice tiling {T + z: z ∈ ℤ3} induced by T. This CW complex structure is isomorphic to the CW complex defined by the truncated octahedron.
引用
收藏
页码:45 / 76
页数:31
相关论文
共 50 条
  • [21] Self-affine tilings with several tiles, I
    Gröchenig, K
    Haas, A
    Raugi, A
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 7 (02) : 211 - 238
  • [22] Expanding polynomials and connectedness of self-affine tiles
    Kirat, I
    Lau, KS
    Rao, H
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 31 (02) : 275 - 286
  • [23] Hausdorff dimension of boundaries of self-affine tiles in RN
    Veerman, JJP
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 1998, 4 (02): : 159 - 182
  • [24] Classification of integral expanding matrices and self-affine tiles
    Kirat, I
    Lau, KS
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 28 (01) : 49 - 73
  • [25] Decomposition of integral self-affine multi-tiles
    Fu, Xiaoye
    Gabardo, Jean-Pierre
    [J]. MATHEMATISCHE NACHRICHTEN, 2019, 292 (06) : 1304 - 1314
  • [26] Integral self-affine tiles of Bandt's model
    Rao, Hui
    Zhang, Li-jun
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (01): : 169 - 176
  • [27] Integral Self-affine Tiles of Bandt's Model
    Hui Rao~1
    [J]. Acta Mathematicae Applicatae Sinica, 2010, 26 (01) : 169 - 176
  • [28] Height reducing property of polynomials and self-affine tiles
    Xing-Gang He
    Ibrahim Kirat
    Ka-Sing Lau
    [J]. Geometriae Dedicata, 2011, 152 : 153 - 164
  • [29] Self-Affine Tiles Generated by a Finite Number of Matrices
    Guotai Deng
    Chuntai Liu
    Sze-Man Ngai
    [J]. Discrete & Computational Geometry, 2023, 70 : 620 - 644
  • [30] Integral self-affine tiles of Bandt’s model
    Hui Rao
    Li-jun Zhang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2010, 26 : 169 - 176