Hypergraph factorization for multi-tissue gene expression imputation

被引:0
|
作者
Ramon Viñas
Chaitanya K. Joshi
Dobrik Georgiev
Phillip Lin
Bianca Dumitrascu
Eric R. Gamazon
Pietro Liò
机构
[1] University of Cambridge,Department of Computer Science and Technology
[2] Vanderbilt University Medical Center,Division of Genetic Medicine
[3] Columbia University,Department of Statistics and Irving Institute for Cancer Dynamics
[4] University of Cambridge,Vanderbilt Genetics Institute and Data Science Institute, MRC Epidemiology Unit
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Integrating gene expression across tissues and cell types is crucial for understanding the coordinated biological mechanisms that drive disease and characterize homoeostasis. However, traditional multi-tissue integration methods either cannot handle uncollected tissues or rely on genotype information, which is often unavailable and subject to privacy concerns. Here we present HYFA (hypergraph factorization), a parameter-efficient graph representation learning approach for joint imputation of multi-tissue and cell-type gene expression. HYFA is genotype agnostic, supports a variable number of collected tissues per individual, and imposes strong inductive biases to leverage the shared regulatory architecture of tissues and genes. In performance comparison on Genotype–Tissue Expression project data, HYFA achieves superior performance over existing methods, especially when multiple reference tissues are available. The HYFA-imputed dataset can be used to identify replicable regulatory genetic variations (expression quantitative trait loci), with substantial gains over the original incomplete dataset. HYFA can accelerate the effective and scalable integration of tissue and cell-type transcriptome biorepositories.
引用
收藏
页码:739 / 753
页数:14
相关论文
共 50 条
  • [41] RNAAgeCalc: A multi-tissue transcriptional age calculator
    Ren, Xu
    Kuan, Pei Fen
    PLOS ONE, 2020, 15 (08):
  • [42] MULTI-TISSUE EPIGENETIC ANALYSIS OF THE OSTEOARTHRITIS SUSCEPTIBILITY LOCUS MAPPING TO THE PLECTIN GENE PLEC
    Sorial, A. K.
    Hofer, I. M.
    Tselepi, M.
    Parker, E.
    Deehan, D. J.
    Rice, S. J.
    Loughlin, J. J.
    OSTEOARTHRITIS AND CARTILAGE, 2020, 28 : S338 - S339
  • [43] MetFLEX: A Novel Multi-tissue Transcriptomics Learning
    Bensmail, Halima
    Baggag, Abdelkader
    GENETIC EPIDEMIOLOGY, 2022, 46 (07) : 480 - 480
  • [44] Multi-tissue transcriptomics for construction of a comprehensive gene resource for the terrestrial snail Theba pisana
    Zhao, M.
    Wang, T.
    Adamson, K. J.
    Storey, K. B.
    Cummins, S. F.
    SCIENTIFIC REPORTS, 2016, 6
  • [45] Novel Loci for Metabolic Networks and Multi-Tissue Expression Studies Reveal Genes for Atherosclerosis
    Inouye, Michael
    Ripatti, Samuli
    Kettunen, Johannes
    Lyytikainen, Leo-Pekka
    Oksala, Niku
    Laurila, Pirkka-Pekka
    Kangas, Antti J.
    Soininen, Pasi
    Savolainen, Markku J.
    Viikari, Jorma
    Kahonen, Mika
    Perola, Markus
    Salomaa, Veikko
    Raitakari, Olli
    Lehtimaki, Terho
    Taskinen, Marja-Riitta
    Jaervelin, Marjo-Riitta
    Ala-Korpela, Mika
    Palotie, Aarno
    de Bakker, Paul I. W.
    PLOS GENETICS, 2012, 8 (08):
  • [46] A multi-tissue atlas of regulatory variants in cattle
    Liu, Shuli
    Gao, Yahui
    Canela-Xandri, Oriol
    Wang, Sheng
    Yu, Ying
    Cai, Wentao
    Li, Bingjie
    Xiang, Ruidong
    Chamberlain, Amanda J.
    Pairo-Castineira, Erola
    D'Mellow, Kenton
    Rawlik, Konrad
    Xia, Charley
    Yao, Yuelin
    Navarro, Pau
    Rocha, Dominique
    Li, Xiujin
    Yan, Ze
    Li, Congjun
    Rosen, Benjamin D.
    Van Tassell, Curtis P.
    Vanraden, Paul M.
    Zhang, Shengli
    Ma, Li
    Cole, John B.
    Liu, George E.
    Tenesa, Albert
    Fang, Lingzhao
    NATURE GENETICS, 2022, 54 (09) : 1438 - +
  • [47] Multi-tissue epigenetic analysis of the osteoarthritis susceptibility locus mapping to the plectin gene PLEC
    Sorial, A. K.
    Hofer, I. M. J.
    Tselepi, M.
    Cheung, K.
    Parker, E.
    Deehan, D. J.
    Rice, S. J.
    Loughlin, J.
    OSTEOARTHRITIS AND CARTILAGE, 2020, 28 (11) : 1448 - 1458
  • [48] Multi-tissue to whole plant metabolic modelling
    Shaw, Rahul
    Cheung, C. Y. Maurice
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2020, 77 (03) : 489 - 495
  • [49] A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity
    Gomez-Carballa, Alberto
    Rivero-Calle, Irene
    Pardo-Seco, Jacobo
    Gomez-Rial, Jose
    Rivero-Velasco, Carmen
    Rodriguez-Nunez, Nuria
    Barbeito-Castineiras, Gema
    Perez-Freixo, Hugo
    Cebey-Lopez, Miriam
    Barral-Arca, Ruth
    Rodriguez-Tenreiro, Carmen
    Dacosta-Urbieta, Ana
    Bello, Xabier
    Pischedda, Sara
    Jose Curras-Tuala, Maria
    Viz-Lasheras, Sandra
    Martinon-Torres, Federico
    Salas, Antonio
    ENVIRONMENTAL RESEARCH, 2022, 210
  • [50] SpOT the Correct Tissue Every Time in Multi-tissue Blocks
    Coffey, Anna
    Johnson, Michael D.
    Berry, Deborah L.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2015, (99):