Adaptive feature weighting for robust Lp-norm sparse representation with application to biometric image classification

被引:0
|
作者
Qi Zhu
Nuoya Xu
Sheng-Jun Huang
Jianjun Qian
Daoqiang Zhang
机构
[1] Nanjing University of Aeronautics and Astronautics,College of Computer Science and Technology
[2] Collaborative Innovation Center of Novel Software Technology and Industrialization,School of Computer Science and Engineering
[3] Nanjing University of Science and Technology,undefined
关键词
Biometrics; Feature weighting; Self-paced learning; Sparse representation;
D O I
暂无
中图分类号
学科分类号
摘要
Sparse representation has attracted much attention in the field of biometrics, such as face recognition and palmprint recognition. Although the lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{p}$$\end{document}-norm (0<p<1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0 < p < 1)$$\end{document} based sparse representation can obtain more sparse solution than the widely used l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{1}$$\end{document}-norm based method, it needs to solve a non-convex optimization problem, which leads to poor robustness in real application. In this paper, we propose a robust lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{p}$$\end{document}-norm sparse representation method with adaptive feature weighting. We derive the adaptive feature weighting method by self-paced learning (SPL), and utilize it to guide the features of lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{p}$$\end{document}-norm sparse representation in the easy-to-hard learning process. Differing from existing SPL methods, feature weighted SPL in our method dynamically evaluates the learning difficulty of each feature rather than sample. For the advantages of the proposed method, it can avoid lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{p}$$\end{document}-norm sparse minimization failing into bad local minima and reduce the effects of noise feature in the early learning stage. Experiments on several biometric image datasets show that our proposed method is superior to conventional lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{p}$$\end{document}-norm based method and the state-of-the-art classification methods.
引用
收藏
页码:463 / 474
页数:11
相关论文
共 50 条
  • [21] ROBUST SPARSE RECOVERY FOR COMPRESSIVE SENSING IN IMPULSIVE NOISE USING lP-NORM MODEL FITTING
    Wen, Fei
    Liu, Peilin
    Liu, Yipeng
    Qiu, Robert C.
    Yu, Wenxian
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 4643 - 4647
  • [22] Hyperspectral Image Classification With Robust Sparse Representation
    Li, Chang
    Ma, Yong
    Mei, Xiaoguang
    Liu, Chengyin
    Ma, Jiayi
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (05) : 641 - 645
  • [23] ADAPTIVE SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Wei
    Du, Qian
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4955 - 4958
  • [24] Overcomplete Dictionary Learning for Nonnegative Sparse Representation with an lp-norm Constraint Based on Majorize-Minimization
    Ishikuro, Shiori
    Ding, Shuxue
    Li, Xiang
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 3341 - 3346
  • [25] Nuclear Norm Joint Sparse Representation for Hyperspectral Image Classification
    Tao, Yingshan
    Yuan, Haoliang
    Lai, Loi Lei
    [J]. 2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 5443 - 5447
  • [26] Adaptive kernel sparse representation based on multiple feature learning for hyperspectral image classification
    Li, Dan
    Wang, Qiang
    Kong, Fanqiang
    [J]. NEUROCOMPUTING, 2020, 400 : 97 - 112
  • [27] Hyperspectral Image Classification via Multiple-Feature-Based Adaptive Sparse Representation
    Fang, Leyuan
    Wang, Cheng
    Li, Shutao
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (07) : 1646 - 1657
  • [28] Noise Robust Frequency-Domain Adaptive Blind Multichannel Identification With lp-Norm Constraint
    He, Hongsen
    Chen, Jingdong
    Benesty, Jacob
    Yang, Tao
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2018, 26 (09) : 1608 - 1619
  • [29] Sparse representation for image classification by using feature dictionary
    Zhang, Wei
    Li, Jiaojie
    Yang, Yupu
    [J]. FIFTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2013), 2013, 8878
  • [30] Robust fuzzy local information and Lp-norm distance-based image segmentation method
    Li, Fang
    Qin, Jing
    [J]. IET IMAGE PROCESSING, 2017, 11 (04) : 217 - 226