Adaptive feature weighting for robust Lp-norm sparse representation with application to biometric image classification

被引:0
|
作者
Qi Zhu
Nuoya Xu
Sheng-Jun Huang
Jianjun Qian
Daoqiang Zhang
机构
[1] Nanjing University of Aeronautics and Astronautics,College of Computer Science and Technology
[2] Collaborative Innovation Center of Novel Software Technology and Industrialization,School of Computer Science and Engineering
[3] Nanjing University of Science and Technology,undefined
关键词
Biometrics; Feature weighting; Self-paced learning; Sparse representation;
D O I
暂无
中图分类号
学科分类号
摘要
Sparse representation has attracted much attention in the field of biometrics, such as face recognition and palmprint recognition. Although the lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{p}$$\end{document}-norm (0<p<1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0 < p < 1)$$\end{document} based sparse representation can obtain more sparse solution than the widely used l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{1}$$\end{document}-norm based method, it needs to solve a non-convex optimization problem, which leads to poor robustness in real application. In this paper, we propose a robust lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{p}$$\end{document}-norm sparse representation method with adaptive feature weighting. We derive the adaptive feature weighting method by self-paced learning (SPL), and utilize it to guide the features of lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{p}$$\end{document}-norm sparse representation in the easy-to-hard learning process. Differing from existing SPL methods, feature weighted SPL in our method dynamically evaluates the learning difficulty of each feature rather than sample. For the advantages of the proposed method, it can avoid lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{p}$$\end{document}-norm sparse minimization failing into bad local minima and reduce the effects of noise feature in the early learning stage. Experiments on several biometric image datasets show that our proposed method is superior to conventional lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{p}$$\end{document}-norm based method and the state-of-the-art classification methods.
引用
收藏
页码:463 / 474
页数:11
相关论文
共 50 条
  • [1] Adaptive feature weighting for robust Lp-norm sparse representation with application to biometric image classification
    Zhu, Qi
    Xu, Nuoya
    Huang, Sheng-Jun
    Qian, Jianjun
    Zhang, Daoqiang
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (02) : 463 - 474
  • [2] Robust geometric lp-norm feature pooling for image classification and action recognition
    Li, Teng
    Meng, Zhijun
    Ni, Bingbing
    Shen, Jianbing
    Wang, Meng
    [J]. IMAGE AND VISION COMPUTING, 2016, 55 : 64 - 76
  • [3] Geometric lp-norm Feature Pooling for Image Classification
    Feng, Jiashi
    Ni, Bingbing
    Tian, Qi
    Yan, Shuicheng
    [J]. 2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
  • [4] Robust and Sparse Tensor Analysis with Lp-norm Maximization
    Tang, Ganyi
    Lu, Guifu
    Wang, Zhongqun
    [J]. PROCEEDINGS OF 2017 8TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2017), 2017, : 751 - 756
  • [5] Adaptive lp-norm regularized sparse representation for human activity recognition in coal mines
    Wang, Deyong
    Geng, Zexun
    [J]. Journal Europeen des Systemes Automatises, 2020, 53 (04): : 499 - 504
  • [6] Group-Based Sparse Representation Based on lp-Norm Minimization for Image Inpainting
    Li, Ruijing
    Tang, Lan
    Bai, Yechao
    Wang, Qiong
    Zhang, Xinggan
    Liu, Min
    [J]. IEEE ACCESS, 2020, 8 : 60515 - 60525
  • [7] A K-Means-Based Interpolation Algorithm With Lp-Norm and Feature Weighting
    Miao, Yipeng
    Xu, Yenan
    [J]. IEEE ACCESS, 2024, 12 : 96179 - 96192
  • [8] Block Principle Component Analysis with Lp-norm for Robust and Sparse Modelling
    唐肝翌
    卢桂馥
    [J]. Journal of Shanghai Jiaotong University(Science), 2018, 23 (03) : 398 - 403
  • [9] Block Principle Component Analysis with Lp-norm for Robust and Sparse Modelling
    Tang G.
    Lu G.
    [J]. Journal of Shanghai Jiaotong University (Science), 2018, 23 (3) : 398 - 403
  • [10] Sparse Data Reconstruction via Adaptive lp-norm and Multilayer NMF
    Salehani, Yaser Esmaeili
    Gazor, Saeed
    [J]. 7TH IEEE ANNUAL INFORMATION TECHNOLOGY, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE IEEE IEMCON-2016, 2016,