Perturbation results for an anisotropic Schrödinger equation via a variational method

被引:0
|
作者
M. Badiale
J. García Azorero
I. Peral
机构
[1] Scuola Normale Superiore,
[2] Piazza dei Cavalieri 7,undefined
[3] I-56126 Pisa,undefined
[4] Italy,undefined
[5] Departamento de Matemáticas de la Universidad Autónoma de Madrid,undefined
[6] Cantoblanco E-28049,undefined
[7] Madrid,undefined
[8] Spain,undefined
关键词
Variational Method;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:201 / 230
页数:29
相关论文
共 50 条
  • [21] Numerical solution of coupled Schrödinger–KdV equation via modified variational iteration algorithm-II
    Safavi M.
    SeMA Journal, 2018, 75 (3) : 499 - 516
  • [22] On optical solitons: the chiral nonlinear Schrödinger equation with perturbation and Bohm potential
    Muhammad Younis
    Nadia Cheemaa
    Syed A. Mahmood
    Syed T. R. Rizvi
    Optical and Quantum Electronics, 2016, 48
  • [23] Minimal length Schrödinger equation via factorisation approach
    S A Khorram-Hosseini
    S Zarrinkamar
    H Panahi
    Pramana, 2019, 92
  • [24] A generalized Schrödinger equation via a complex Lagrangian of electrodynamics
    Nicoleta Aldea
    Gheorghe Munteanu
    Journal of Nonlinear Mathematical Physics, 2015, 22 : 361 - 373
  • [25] Variational Statement of the Schrödinger Equation with a Nonstationary Nonlinearity and Its Integrals of Motion
    A. D. Bulygin
    A. A. Zemlyanov
    Differential Equations, 2018, 54 : 1394 - 1398
  • [26] Specificity of the Schrödinger equation
    Cetto A.M.
    la Peña L.
    Valdés-Hernández A.
    Quantum Studies: Mathematics and Foundations, 2015, 2 (3) : 275 - 287
  • [27] Asymmetric bound states via the quadrupled Schrödinger equation
    Ustav Jaderne Fyziky AV CR, 250 68 Řež, Czech Republic
    Phys Lett Sect A Gen At Solid State Phys, 5-6 (283-287):
  • [28] Hyperbolic Schrödinger equation
    Zheng Z.
    Xuegang Y.
    Advances in Applied Clifford Algebras, 2004, 14 (2) : 207 - 213
  • [29] Variational Method for Determining the Complex-Valued Coefficients of a Nonlinear Nonstationary Schrödinger-Type Equation
    M. A. Musaeva
    Computational Mathematics and Mathematical Physics, 2020, 60 : 1923 - 1935
  • [30] A numerical method for solving the time fractional Schrödinger equation
    Na Liu
    Wei Jiang
    Advances in Computational Mathematics, 2018, 44 : 1235 - 1248