Quantum vacua of 2d maximally supersymmetric Yang-Mills theory

被引:0
|
作者
Murat Koloğlu
机构
[1] California Institute of Technology,Walter Burke Institute for Theoretical Physics
关键词
Brane Dynamics in Gauge Theories; D-branes; Sigma Models; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the classical and quantum vacua of 2d N=88\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(8,8\right) $$\end{document} supersymmetric Yang-Mills theory with SU(N) and U(N) gauge group, describing the worldvolume interactions of N parallel D1-branes with flat transverse directions ℝ8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{R}}}^8 $$\end{document}. We claim that the IR limit of the SU(N) theory in the superselection sector labeled M (mod N) — identified with the internal dynamics of (M, N)-string bound states of the Type IIB string theory — is described by the symmetric orbifold N=88\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(8,8\right) $$\end{document} sigma model into ℝ8D−1/SD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left({\mathrm{\mathbb{R}}}^8\right)}^{D-1}/{\mathbb{S}}_D $$\end{document} when D = gcd(M, N) > 1, and by a single massive vacuum when D = 1, generalizing the conjectures of E. Witten and others. The full worldvolume theory of the D1-branes is the U(N) theory with an additional U(1) 2-form gauge field B coming from the string theory Kalb-Ramond field. This U(N) + B theory has generalized field configurations, labeled by the ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathbb{Z}} $$\end{document}-valued generalized electric flux and an independent ℤN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{Z}}}_N $$\end{document}-valued ’t Hooft flux. We argue that in the quantum mechanical theory, the (M, N)-string sector with M units of electric flux has a ℤN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{Z}}}_N $$\end{document}-valued discrete θ angle specified by M (mod N) dual to the ’t Hooft flux. Adding the brane center-of-mass degrees of freedom to the SU(N) theory, we claim that the IR limit of the U(N) + B theory in the sector with M bound F-strings is described by the N=88\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(8,8\right) $$\end{document} sigma model into SymDℝ8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{Sym}}^D\left({\mathrm{\mathbb{R}}}^8\right) $$\end{document}. We provide strong evidence for these claims by computing an N=88\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(8,8\right) $$\end{document} analog of the elliptic genus of the UV gauge theories and of their conjectured IR limit sigma models, and showing they agree. Agreement is established by noting that the elliptic genera are modular-invariant Abelian (multi-periodic and meromorphic) functions, which turns out to be very restrictive.
引用
收藏
相关论文
共 50 条
  • [31] Supersymmetric Yang-Mills quantum mechanics
    Wosiek, J
    CONFINEMENT, TOPOLOGY AND OTHER NON-PERTUBATIVE ASPECTS OF QCD, 2002, 83 : 303 - 314
  • [32] On 2D Yang-Mills theory and invariants of links
    Polyak, M
    Reshetikhin, N
    DEFORMATION THEORY AND SYMPLECTIC GEOMETRY: PROCEEDINGS OF THE ASCONA MEETING, JUNE 1996, 1997, 20 : 223 - 248
  • [33] ON DUALITY IN SUPERSYMMETRIC YANG-MILLS THEORY
    KUTASOV, D
    SCHWIMMER, A
    PHYSICS LETTERS B, 1995, 354 (3-4) : 315 - 321
  • [34] Supersymmetric Yang-Mills theory on the lattice
    Montvay, I
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (18): : 2377 - 2412
  • [35] 2D Yang-Mills theory as a matrix string theory
    Billò, M
    Caselle, M
    D'Adda, A
    Provero, P
    QUANTUM ASPECTS OF GAUGE THEORIES, SUPERSYMMETRY AND UNIFICATION, 1999, 525 : 313 - 322
  • [36] Structure in supersymmetric Yang-Mills theory
    Sethi, S
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (10):
  • [37] VACUA FOR SU(2) YANG-MILLS
    ANISHETTY, R
    PHYSICS LETTERS B, 1982, 108 (4-5) : 295 - 298
  • [38] A note on the UV behaviour of maximally supersymmetric Yang-Mills theories
    Bossard, G.
    Howe, P. S.
    Stelle, K. S.
    PHYSICS LETTERS B, 2009, 682 (01) : 137 - 142
  • [39] Maximally supersymmetric planar Yang-Mills amplitudes at five loops
    Bern, Z.
    Carrasco, J. J. M.
    Johansson, H.
    Kosower, D. A.
    PHYSICAL REVIEW D, 2007, 76 (12):
  • [40] Integrability and Maximally Helicity Violating Diagrams in N=4 Supersymmetric Yang-Mills Theory
    Brandhuber, Andreas
    Penante, Brenda
    Travaglini, Gabriele
    Young, Donovan
    PHYSICAL REVIEW LETTERS, 2015, 114 (07)