Quantum vacua of 2d maximally supersymmetric Yang-Mills theory

被引:0
|
作者
Murat Koloğlu
机构
[1] California Institute of Technology,Walter Burke Institute for Theoretical Physics
关键词
Brane Dynamics in Gauge Theories; D-branes; Sigma Models; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the classical and quantum vacua of 2d N=88\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(8,8\right) $$\end{document} supersymmetric Yang-Mills theory with SU(N) and U(N) gauge group, describing the worldvolume interactions of N parallel D1-branes with flat transverse directions ℝ8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{R}}}^8 $$\end{document}. We claim that the IR limit of the SU(N) theory in the superselection sector labeled M (mod N) — identified with the internal dynamics of (M, N)-string bound states of the Type IIB string theory — is described by the symmetric orbifold N=88\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(8,8\right) $$\end{document} sigma model into ℝ8D−1/SD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left({\mathrm{\mathbb{R}}}^8\right)}^{D-1}/{\mathbb{S}}_D $$\end{document} when D = gcd(M, N) > 1, and by a single massive vacuum when D = 1, generalizing the conjectures of E. Witten and others. The full worldvolume theory of the D1-branes is the U(N) theory with an additional U(1) 2-form gauge field B coming from the string theory Kalb-Ramond field. This U(N) + B theory has generalized field configurations, labeled by the ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathbb{Z}} $$\end{document}-valued generalized electric flux and an independent ℤN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{Z}}}_N $$\end{document}-valued ’t Hooft flux. We argue that in the quantum mechanical theory, the (M, N)-string sector with M units of electric flux has a ℤN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{Z}}}_N $$\end{document}-valued discrete θ angle specified by M (mod N) dual to the ’t Hooft flux. Adding the brane center-of-mass degrees of freedom to the SU(N) theory, we claim that the IR limit of the U(N) + B theory in the sector with M bound F-strings is described by the N=88\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(8,8\right) $$\end{document} sigma model into SymDℝ8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{Sym}}^D\left({\mathrm{\mathbb{R}}}^8\right) $$\end{document}. We provide strong evidence for these claims by computing an N=88\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(8,8\right) $$\end{document} analog of the elliptic genus of the UV gauge theories and of their conjectured IR limit sigma models, and showing they agree. Agreement is established by noting that the elliptic genera are modular-invariant Abelian (multi-periodic and meromorphic) functions, which turns out to be very restrictive.
引用
收藏
相关论文
共 50 条
  • [1] Quantum vacua of 2d maximally supersymmetric Yang-Mills theory
    Kologlu, Murat
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (11):
  • [2] Counting vacua in supersymmetric Yang-Mills theory
    Selivanov, KG
    PHYSICS-USPEKHI, 2002, 45 (07) : 675 - 686
  • [3] Maximally supersymmetric Yang-Mills theory: The story of N=4 Yang-Mills theory
    Brink, Lars
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (01):
  • [4] Solving N=2 supersymmetric Yang-Mills theory by reflection symmetry of quantum vacua
    Bonelli, G
    Matone, M
    Tonin, M
    PHYSICAL REVIEW D, 1997, 55 (10): : 6466 - 6470
  • [5] Solving N = 2 supersymmetric Yang-Mills theory by reflection symmetry of quantum vacua
    Bonelli, G.
    Matone, M.
    Tonin, M.
    1997, (55):
  • [6] Wilson loops: From 4D supersymmetric Yang-Mills theory to 2D Yang-Mills theory
    Drukker, Nadav
    Giombi, Simone
    Ricci, Riccardo
    Trancanelli, Diego
    PHYSICAL REVIEW D, 2008, 77 (04):
  • [7] Planar amplitudes in maximally supersymmetric Yang-Mills theory
    Anastasiou, C
    Dixon, L
    Bern, Z
    Kosower, DA
    PHYSICAL REVIEW LETTERS, 2003, 91 (25) : 251602 - 251602
  • [8] On maximally supersymmetric Yang-Mills theories
    Movshev, M
    Schwarz, A
    NUCLEAR PHYSICS B, 2004, 681 (03) : 324 - 350
  • [9] Maximally supersymmetric Yang-Mills on the lattice
    Schaich, David
    Catterall, Simon
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2017, 32 (36):
  • [10] D = 5 maximally supersymmetric Yang-Mills theory diverges at six loops
    Bern, Zvi
    Carrasco, John Joseph M.
    Dixon, Lance J.
    Douglas, Michael R.
    von Hippel, Matt
    Johansson, Henrik
    PHYSICAL REVIEW D, 2013, 87 (02):