Exponents of two-colored digraphs

被引:0
|
作者
Yanling Shao
Yubin Gao
机构
[1] North University of China,Department of Mathematics
来源
关键词
exponent; digraph; primitivity; 15A18; 15A48;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the primitive two-colored digraphs whose uncolored digraph has n + s vertices and consists of one n-cycle and one (n − 3)-cycle. We give bounds on the exponents and characterizations of extremal two-colored digraphs.
引用
收藏
页码:655 / 685
页数:30
相关论文
共 50 条
  • [21] Upper Bound of Primitive Exponents of a Class of Two-colored Digraph with n Vertices
    Luo, Meijin
    Li, Xi
    [J]. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON EDUCATION, MANAGEMENT, INFORMATION AND MECHANICAL ENGINEERING (EMIM 2017), 2017, 76 : 1089 - 1093
  • [22] Monochromatic triangles in two-colored plane
    Jelínek V.
    Kynčl J.
    Stolař R.
    Valla T.
    [J]. Combinatorica, 2009, 29 (6) : 699 - 718
  • [23] MONOCHROMATIC TRIANGLES IN TWO-COLORED PLANE
    Jelinek, Vit
    Kyncl, Jan
    Stolar, Rudolf
    Valla, Tomas
    [J]. COMBINATORICA, 2009, 29 (06) : 699 - 718
  • [24] Local Exponent of Asymmetric Two-colored Lollipops
    Perangin-angin, Muda G.
    Fathoni, Muhammad
    Syahmarani, Aghni
    Suwilo, Saib
    [J]. INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2014), 2014, 1635 : 471 - 478
  • [25] Affine crystal graphs and two-colored partitions
    Kwon, JH
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2006, 75 (02) : 171 - 186
  • [26] Approximating Monochromatic Triangles in a Two-Colored Plane
    M. J. Nielsen
    [J]. Acta Mathematica Hungarica, 1997, 74 : 279 - 286
  • [27] Approximating monochromatic triangles in a two-colored plane
    Nielsen, MJ
    [J]. ACTA MATHEMATICA HUNGARICA, 1997, 74 (04) : 279 - 286
  • [28] Affine Crystal Graphs And Two-Colored Partitions
    Jae-Hoon Kwon
    [J]. Letters in Mathematical Physics, 2006, 75 : 171 - 186
  • [29] Large monochromatic components in two-colored grids
    Matousek, Jiri
    Privetivy, Ales
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (01) : 295 - 311
  • [30] Special monochromatic trees in two-colored complete graphs
    Chen, GT
    Schelp, RH
    Soltes, LI
    [J]. JOURNAL OF GRAPH THEORY, 1997, 24 (01) : 59 - 67