Effective Potential for the Reaction-Diffusion-Decay System

被引:0
|
作者
David Hochberg
Carmen Molina-París
Juan Pérez-Mercader
Matt Visser
机构
[1] Laboratorio de Astrofísica Espacial y Física Fundamental,Physics Department
[2] Centro de Astrobiología,undefined
[3] CSIC/INTA,undefined
[4] Centro de Astrobiología,undefined
[5] CSIC/INTA,undefined
[6] Centro de Astrobiología,undefined
[7] CSIC/INTA,undefined
[8] Washington University,undefined
来源
关键词
effective potential; reaction; diffusion; decay;
D O I
暂无
中图分类号
学科分类号
摘要
In previous work we have developed a general method for casting stochastic partial differential equations (SPDEs) into a functional integral formalism, and have derived the one-loop effective potential for these systems. In this paper we apply the same formalism to a specific field theory of considerable interest, the reaction-diffusion-decay system. When this field theory is subject to white noise we can calculate the one-loop effective potential (for arbitrary polynomial reaction kinetics) and show that it is one-loop ultraviolet renormalizable in 1, 2, and 3 space dimensions. For specific choices of interaction terms the one-loop renormalizability can be extended to higher dimensions. We also show how to include the effects of fluctuations in the study of pattern formation away from equilibrium, and conclude that noise affects the stability of the system in a way which is calculable.
引用
收藏
页码:903 / 941
页数:38
相关论文
共 50 条
  • [11] Two-species reaction-diffusion system with equal diffusion constants: Anomalous density decay at large times
    Konkoli, Z
    Johannesson, H
    PHYSICAL REVIEW E, 2000, 62 (03): : 3276 - 3280
  • [12] Neuronal growth as diffusion in an effective potential
    Rizzo, Daniel J.
    White, James D.
    Spedden, Elise
    Wiens, Matthew R.
    Kaplan, David L.
    Atherton, Timothy J.
    Staii, Cristian
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [13] Exponential decay toward equilibrium via log convexity for a degenerate reaction-diffusion system
    Desvillettes, Laurent
    Phung, Kim Dang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 338 : 227 - 255
  • [14] On Uniform Decay of the Entropy for Reaction-Diffusion Systems
    Mielke, Alexander
    Haskovec, Jan
    Markowich, Peter A.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2015, 27 (3-4) : 897 - 928
  • [15] Spatial decay of rotating waves in reaction diffusion systems
    Beyn, Wolf-Juergen
    Otten, Denny
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2016, 13 (03) : 191 - 240
  • [16] DECAY TO EQUILIBRIUM FOR ENERGY-REACTION-DIFFUSION SYSTEMS
    Haskovec, Jan
    Hittmeir, Sabine
    Markowich, Peter
    Mielke, Alexander
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (01) : 1037 - 1075
  • [18] Effective reaction rates for diffusion-limited reaction cycles
    Nalecz-Jawecki, Pawel
    Szymanska, Paulina
    Kochanczyk, Marek
    Miekisz, Jacek
    Lipniacki, Tomasz
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (21):
  • [19] Nonequilibrium decay of the thermal diffusion in a tilted periodic potential
    Monnai, Takaaki
    Sugita, Ayumul
    Nakamura, Katsuhiro
    COMPTES RENDUS PHYSIQUE, 2007, 8 (5-6) : 661 - 673
  • [20] The effective Higgs potential and vacuum decay in Starobinsky inflation
    Mantziris, Andreas
    Markkanen, Tommi
    Rajantie, Arttu
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (10):