A System of p-Laplacian Equations on the Sierpiński Gasket

被引:0
|
作者
Abhilash Sahu
Amit Priyadarshi
机构
[1] Indian Institute of Technology Guwahati,Department of Mathematics
[2] Indian Institute of Technology Delhi,Department of Mathematics
来源
关键词
Sierpiński gasket; weak p-Laplacian; weak solutions; p-energy; Euler functional; system of equations; Primary 28A80; 35J61;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a system of boundary value problems involving weak p-Laplacian on the Sierpiński gasket in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}. Parameters λ,γ,α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda , \gamma , \alpha , \beta $$\end{document} are real and 1<q<p<α+β.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<p<\alpha +\beta .$$\end{document} Functions a,b,h:S→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b,h : \mathcal {S} \rightarrow \mathbb {R}$$\end{document} are suitably chosen. For p>1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1,$$\end{document} we show the existence of at least two nontrivial weak solutions to the system of equations for some (λ,γ)∈R2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda ,\gamma ) \in \mathbb {R}^2.$$\end{document}
引用
收藏
相关论文
共 50 条
  • [41] Periodic solutions of p-Laplacian equations with singularities
    Shipin Lu
    Tao Zhong
    Yajing Gao
    [J]. Advances in Difference Equations, 2016
  • [42] Periodic solutions of p-Laplacian equations with singularities
    Lu, Shipin
    Zhong, Tao
    Gao, Yajing
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [43] Uniqueness and positivity for solutions of equations with the p-Laplacian
    Fleckinger-Pelle, J
    Hernandez, J
    Takac, P
    de Thelin, F
    [J]. REACTION DIFFUSION SYSTEMS, 1998, 194 : 141 - 155
  • [44] On weak solutions for p-Laplacian equations with weights
    Pucci, Patrizia
    Servadei, Raffaella
    [J]. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 2007, 18 (03): : 257 - 267
  • [45] Nonuniformly elliptic equations of p-Laplacian type
    Duc, DM
    Vu, NT
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (08) : 1483 - 1495
  • [46] On the Gibbons’ conjecture for equations involving the p-Laplacian
    Francesco Esposito
    Alberto Farina
    Luigi Montoro
    Berardino Sciunzi
    [J]. Mathematische Annalen, 2022, 382 : 943 - 974
  • [47] Asymptotically linear fractional p-Laplacian equations
    Bartolo, Rossella
    Bisci, Giovanni Molica
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (02) : 427 - 442
  • [48] Analysis on an HDG Method for the p-Laplacian Equations
    Qiu, Weifeng
    Shi, Ke
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (02) : 1019 - 1032
  • [49] On oscillation and nonoscillation for differential equations with p-laplacian
    Bartusek, Miroslav
    Cecchi, Mariella
    Dosla, Zuzana
    Marini, Mauro
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2007, 14 (02) : 239 - 252
  • [50] Nontrivial solutions of superlinear p-Laplacian equations
    Fang, Fei
    Liu, Shibo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) : 138 - 146