Redox-driven proton translocation in methanogenic Archaea

被引:0
|
作者
U. Deppenmeier
机构
[1] Institut für Mikrobiologie und Genetik,
[2] Universität Göttingen,undefined
[3] Grisebachstr. 8,undefined
[4] 37077 Göttingen (Germany),undefined
[5] Fax + 49 551 393793,undefined
[6] e-mail: udeppen@gwdg.de,undefined
关键词
Key words. Methanogens; proton translocation; energy transduction; respiratory chain; NADH dehydrogenase; F420H2 dehydrogenase; hydrogenase; heterodisulfide reductase.;
D O I
暂无
中图分类号
学科分类号
摘要
Methanogenic archaea of the genus Methanosarcina are able to utilize H2 + CO2, methylated C1 compounds or acetate as energy and carbon source, thereby producing methane as the major end product. The methanogenic pathways lead to the formation of a mixed disulfide derived from coenzyme M and coenzyme B. This disulfide is of major importance for methanogens because it is the terminal electron acceptor of a branched respiratory chain. Molecular hydrogen, reduced coenzyme F420 or reduced ferredoxin are used as electron donors. Four enzymes are involved in the membrane-bound electron transport system of Methanosarcina species, all of which are involved in the generation of an electrochemical proton gradient that is used for ATP synthesis. This review focuses on the membrane-bound electron transport chains of Methanosarcina species with respect to the biochemical and genetic characteristics of the unusual energy transducing enzymes. Furthermore, the review addresses questions concerning the relationship between methanogenic proteins and components of respiratory chains found in bacteria and eukarya.
引用
收藏
页码:1513 / 1533
页数:20
相关论文
共 50 条
  • [41] Lead-catalyzed redox-driven recrystallization of lead oxide
    Pan, Weiyi
    Giammar, Daniel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [42] Depression wetland formation by redox-driven iron and silica cycling
    Steven Ellery
    William Ellery
    Harilaos Tsikos
    John Dunlevey
    Wetlands Ecology and Management, 2024, 32 : 191 - 206
  • [43] Thermodynamic controls on redox-driven kinetic stable isotope fractionation
    Joe-Wong, C.
    Weave, K. L.
    Brown, S. T.
    Maher, K.
    GEOCHEMICAL PERSPECTIVES LETTERS, 2019, 10 : 20 - 25
  • [44] Redox-Driven Route for Widening Voltage Window in Asymmetric Supercapacitor
    Sahoo, Ramkrishna
    Duy Tho Pham
    Lee, Tae Hoon
    Thi Hoai Thuong Luu
    Seok, Jinbong
    Lee, Young Hee
    ACS NANO, 2018, 12 (08) : 8494 - 8505
  • [45] Compartmentalized Nanoreactors for One-Pot Redox-Driven Transformations
    Qu, Peiyuan
    Kuepfert, Michael
    Jockusch, Steffen
    Weck, Marcus
    ACS CATALYSIS, 2019, 9 (04): : 2701 - 2706
  • [46] Physiological role, structure and function of a redox-driven, molecular machine
    Steuber, Julia
    Fritz, Guenter
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2024, 1865 (04):
  • [47] Depression wetland formation by redox-driven iron and silica cycling
    Ellery, Steven
    Ellery, William
    Tsikos, Harilaos
    Dunlevey, John
    WETLANDS ECOLOGY AND MANAGEMENT, 2024, 32 (02) : 191 - 206
  • [48] Redox-driven porphyrin based systems for new luminescent molecular switches
    Norel, Lucie
    Tourbillon, Clarisse
    Warnan, Julien
    Audibert, Jean-Frederic
    Pellegrin, Yann
    Miomandre, Fabien
    Odobel, Fabrice
    Rigaut, Stephane
    DALTON TRANSACTIONS, 2018, 47 (25) : 8364 - 8374
  • [49] Controllable positive exchange bias via redox-driven oxygen migration
    Gilbert, Dustin A.
    Olamit, Justin
    Dumas, Randy K.
    Kirby, B. J.
    Grutter, Alexander J.
    Maranville, Brian B.
    Arenholz, Elke
    Borchers, Julie A.
    Liu, Kai
    NATURE COMMUNICATIONS, 2016, 7
  • [50] Pumping iron: Does bacterioferritin contain a redox-driven iron pump?
    Thomson, AJ
    LeBrun, NE
    Keech, A
    Andrews, SC
    Moore, GR
    BIOCHEMICAL SOCIETY TRANSACTIONS, 1997, 25 (01) : 96 - 101