Assessing cyclone disturbances (1988–2016) in the Sundarbans mangrove forests using Landsat and Google Earth Engine

被引:2
|
作者
Mohammad Shamim Hasan Mandal
Tetsuro Hosaka
机构
[1] Hiroshima University,Department of Development Technology, Graduate School for International Development and Cooperation (IDEC)
来源
Natural Hazards | 2020年 / 102卷
关键词
NDVI; GEE; Wind damage; Hurricane damage;
D O I
暂无
中图分类号
学科分类号
摘要
Cyclone disturbances can cause significant damage to forest vegetation. The Sundarbans spreading across Bangladesh and India, the world’s largest mangrove forest, is frequently exposed to cyclones of various magnitudes. However, the extent and pattern of forest disturbances caused by cyclones in the Sundarbans (both parts) remain poorly understood, and a long-term dataset focused on cyclones and forest disturbances is required. In this study, Google Earth Engine and Landsat images were used to evaluate changes in the normalized difference vegetation index (NDVI) before versus after 21 cyclones that occurred between 1988 and 2016. Supervised classification successfully classified the forest area with an overall accuracy of 86% and Kappa coefficient of 0.80. The percentage of affected forest area (i.e., the area that exhibited negative changes in NDVI values following a cyclone) ranged from 0.5 to 24.1% of the total forest area. Of the 21 focal cyclones, 18 affected less than 10% of the forest area, while two cyclones, Sidr in 2007 (category H5) and a cyclone in 1988 (category H3), affected 24.1% and 20.4%, respectively. Among the cyclone parameters (i.e., maximum wind speed, distance from the Sundarbans, and river water level), wind speed was significantly and positively correlated with affected forest area. Wind speed and affected forest area were nonlinearly related indicated by the piecewise linear regression and cubic regression. The piecewise model estimated a threshold point, suggesting that wind speed had little effects below a breakpoint of 101.9 km h−1. Our analyses, based on a 29-year dataset, suggest that, although the region experienced cyclones almost every year, only the largest cyclones (i.e., in the H3 category or higher) affected 20% or more of the mangrove forest area, and these occurred around once per 7- to 12-year period. Trees with broken stems or uprooted canopies as a result of strong winds are likely to contribute to the reduction in NDVI in the aftermath of a cyclone. From a long-term perspective, such rare yet intense cyclones may have a significant effect on regeneration and species composition in the Sundarbans mangrove forest. Since previous studies only focused on a few cyclones, our results based on 21 cyclones will certainly help better understanding of the effects of cyclones on mangrove forest disturbance.
引用
下载
收藏
页码:133 / 150
页数:17
相关论文
共 50 条
  • [21] Mapping Multi-Decadal Mangrove Extent in the Northern Coast of Vietnam Using Landsat Time-Series Data on Google Earth Engine Platform
    Thuy Thi Phuong Vu
    Tien Dat Pham
    Saintilan, Neil
    Skidmore, Andrew
    Hung Viet Luu
    Quang Hien Vu
    Nga Nhu Le
    Huu Quang Nguyen
    Matsushita, Bunkei
    REMOTE SENSING, 2022, 14 (18)
  • [22] Estimation of gross primary productivity of Indian Sundarbans mangrove forests using field measurements and Landsat 8 Operational Land Imager data
    Tanumi Kumar
    Prabir Kumar Das
    Tropical Ecology, 2023, 64 : 167 - 179
  • [23] Estimation of gross primary productivity of Indian Sundarbans mangrove forests using field measurements and Landsat 8 Operational Land Imager data
    Kumar, Tanumi
    Das, Prabir Kumar
    TROPICAL ECOLOGY, 2023, 64 (01) : 167 - 179
  • [24] Assessing Landscape Fire Hazard by Multitemporal Automatic Classification of Landsat Time Series Using the Google Earth Engine in West-Central Spain
    Quintero, Natalia
    Viedma, Olga
    Urbieta, Itziar R.
    Moreno, Jose M.
    FORESTS, 2019, 10 (06):
  • [25] Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine
    Huang, Huabing
    Chen, Yanlei
    Clinton, Nicholas
    Wang, Jie
    Wang, Xiaoyi
    Liu, Caixia
    Gong, Peng
    Yang, Jun
    Bai, Yuqi
    Zheng, Yaomin
    Zhu, Zhiliang
    REMOTE SENSING OF ENVIRONMENT, 2017, 202 : 166 - 176
  • [26] Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine
    Pericak, Andrew A.
    Thomas, Christian J.
    Kroodsma, David A.
    Wasson, Matthew F.
    Ross, Matthew R. V.
    Clinton, Nicholas E.
    Campagna, David J.
    Franklin, Yolandita
    Bernhardt, Emily S.
    Amos, John F.
    PLOS ONE, 2018, 13 (07):
  • [27] Vegetation Types Mapping Using Multi-Temporal Landsat Images in the Google Earth Engine Platform
    Aghababaei, Masoumeh
    Ebrahimi, Ataollah
    Naghipour, Ali Asghar
    Asadi, Esmaeil
    Verrelst, Jochem
    REMOTE SENSING, 2021, 13 (22)
  • [28] Spatiotemporal Mapping of Surface Water Using Landsat Images and Spectral Mixture Analysis on Google Earth Engine
    Cai, Yaotong
    Shi, Qian
    Liu, Xiaoping
    JOURNAL OF REMOTE SENSING, 2024, 4
  • [29] Bamboo Forest Mapping in China Using the Dense Landsat 8 Image Archive and Google Earth Engine
    Qi, Shuhua
    Song, Bin
    Liu, Chong
    Gong, Peng
    Luo, Jin
    Zhang, Meinan
    Xiong, Tianwei
    REMOTE SENSING, 2022, 14 (03)
  • [30] Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine
    Wang, Xinxin
    Xiao, Xiangming
    Zou, Zhenhua
    Hou, Luyao
    Qin, Yuanwei
    Dong, Jinwei
    Doughty, Russell B.
    Chen, Bangqian
    Zhang, Xi
    Cheng, Ying
    Ma, Jun
    Zhao, Bin
    Li, Bo
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 163 : 312 - 326