On Ramsey Numbers for Trees Versus Wheels of Five or Six Vertices

被引:0
|
作者
E.T. Baskoro
S.M. Surahmat
M. Nababan
机构
[1] Department of Mathematics,
[2] Institut Teknologi Bandung,undefined
[3] Jalan Ganesa 10 Bandung,undefined
[4] Indonesia. e-mails: {ebaskoro,undefined
[5] kana_s,undefined
[6] nababan}@dns.math.itb.ac.id,undefined
[7] Department of Computer Science and Software Engineering,undefined
[8] The University of Newcastle,undefined
[9] Callaghan,undefined
[10] NSW 2308,undefined
[11] Australia. e-mail: mirka@cs.newcastle.edu.au,undefined
来源
Graphs and Combinatorics | 2002年 / 18卷
关键词
Positive Integer; Open Problem; Tree Versus; Small Positive Integer; Ramsey Number;
D O I
暂无
中图分类号
学科分类号
摘要
 For given two graphs G dan H, the Ramsey numberR(G,H) is the smallest positive integer n such that every graph F of order n must contain G or the complement of F must contain H. In [12], the Ramsey numbers for the combination between a star Sn and a wheel Wm for m=4,5 were shown, namely, R(Sn,W4)=2n−1 for odd n and n≥3, otherwise R(Sn,W4)=2n+1, and R(Sn,W5)=3n−2 for n≥3. In this paper, we shall study the Ramsey number R(G,Wm) for G any tree Tn. We show that if Tn is not a star then the Ramsey number R(Tn,W4)=2n−1 for n≥4 and R(Tn,W5)=3n−2 for n≥3. We also list some open problems.
引用
收藏
页码:717 / 721
页数:4
相关论文
共 50 条
  • [21] The Ramsey Numbers of Large cycles Versus Odd Wheels
    E. T. Surahmat
    Ioan Baskoro
    Graphs and Combinatorics, 2008, 24 : 53 - 58
  • [22] The Ramsey numbers of large cycles versus odd wheels
    Surahmat
    Baskoro, E. T.
    Tomescu, Ioan
    GRAPHS AND COMBINATORICS, 2008, 24 (01) : 53 - 58
  • [23] The Ramsey numbers for cycles versus wheels of even order
    Zhang, Lianmin
    Chen, Yaojun
    Cheng, T. C. Edwin
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (01) : 254 - 259
  • [24] On Ramsey Numbers of Short Paths versus Large Wheels
    Zhang, Yunqing
    ARS COMBINATORIA, 2008, 89 : 11 - 20
  • [25] The Ramsey numbers of paths versus wheels: a complete solution
    Li, Binlong
    Ning, Bo
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [26] Ramsey numbers of long cycles versus books or wheels
    Shi, Lingsheng
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (03) : 828 - 838
  • [27] Ramsey numbers of stars versus wheels of similar sizes
    Korolova, A
    DISCRETE MATHEMATICS, 2005, 292 (1-3) : 107 - 117
  • [28] ON THE RAMSEY NUMBERS OF NON-STAR TREES VERSUS CONNECTED GRAPHS OF ORDER SIX
    Lortz, Roland
    Mengersen, Ingrid
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (02) : 331 - 349
  • [29] The Ramsey Number of Wheels versus a Fan of Order Five
    Meng, Yanjun
    Zhang, Yanbo
    Zhang, Yunqing
    ARS COMBINATORIA, 2018, 137 : 365 - 372
  • [30] Ramsey numbers of trees versus odd cycles
    Brennan, Matthew
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03):