Homogeneous almost quaternion-Hermitian manifolds

被引:0
|
作者
Andrei Moroianu
Mihaela Pilca
Uwe Semmelmann
机构
[1] Université de Versailles-St Quentin,Laboratoire de Mathématiques
[2] Universität Regensburg,Fakultät für Mathematik
[3] “Simion Stoilow” of the Romanian Academy,Institute of Mathematics
[4] Universität Stuttgart,Institut für Geometrie und Topologie, Fachbereich Mathematik
来源
Mathematische Annalen | 2013年 / 357卷
关键词
Primary 53C30; 53C35; 53C15; Secondary 17B22;
D O I
暂无
中图分类号
学科分类号
摘要
An almost quaternion-Hermitian structure on a Riemannian manifold \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M^{4n},g)$$\end{document} is a reduction of the structure group of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Sp}(n)\mathrm{Sp}(1)\subset \text{ SO }(4n)$$\end{document}. In this paper we show that a compact simply connected homogeneous almost quaternion-Hermitian manifold of non-vanishing Euler characteristic is either a Wolf space, or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{S }^2\times \mathbb{S }^2$$\end{document}, or the complex quadric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ SO }(7)/\mathrm{U}(3)$$\end{document}.
引用
收藏
页码:1205 / 1216
页数:11
相关论文
共 50 条
  • [21] Product of Almost-Hermitian Manifolds
    Xu-Qian Fan
    Luen-Fai Tam
    Chengjie Yu
    The Journal of Geometric Analysis, 2014, 24 : 1425 - 1446
  • [22] PARABOLIC FLOWS ON ALMOST HERMITIAN MANIFOLDS
    Kawamura, Masaya
    KYUSHU JOURNAL OF MATHEMATICS, 2019, 73 (01) : 69 - 87
  • [23] Almost Hermitian manifolds and Osserman condition
    Blazic, N
    Prvanovic, M
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2001, 71 (1): : 35 - 47
  • [24] On the Hypersurfaces of Almost Hermitian Statistical Manifolds
    Haniyeh Akbari
    Fereshteh Malek
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 2669 - 2684
  • [25] SOME EXAMPLES OF ALMOST HERMITIAN MANIFOLDS
    GRAY, A
    ILLINOIS JOURNAL OF MATHEMATICS, 1966, 10 (02) : 353 - &
  • [26] The Yamabe problem for almost Hermitian manifolds
    Del Rio H.
    Simanca S.R.
    The Journal of Geometric Analysis, 2003, 13 (1): : 185 - 203
  • [27] ISOMETRIC IMMERSIONS OF ALMOST HERMITIAN MANIFOLDS
    GRAY, A
    CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (02): : 456 - &
  • [28] Estimates for a function on almost Hermitian manifolds
    Kawamura, Masaya
    COMPLEX MANIFOLDS, 2021, 8 (01): : 267 - 273
  • [29] On the Constant Type of Almost Hermitian Manifolds
    V. F. Kirichenko
    I. V. Tret'yakova
    Mathematical Notes, 2000, 68 : 569 - 575
  • [30] On the constant type of almost Hermitian manifolds
    Kirichenko, VF
    Tret'yakova, IV
    MATHEMATICAL NOTES, 2000, 68 (5-6) : 569 - 575