Polynomial-Time Decomposition Algorithms for Support Vector Machines

被引:0
|
作者
Don Hush
Clint Scovel
机构
[1] Los Alamos National Laboratory,
来源
Machine Learning | 2003年 / 51卷
关键词
support vector machines; polynomial-time algorithms; decomposition algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the convergence properties of a general class of decomposition algorithms for support vector machines (SVMs). We provide a model algorithm for decomposition, and prove necessary and sufficient conditions for stepwise improvement of this algorithm. We introduce a simple “rate certifying” condition and prove a polynomial-time bound on the rate of convergence of the model algorithm when it satisfies this condition. Although it is not clear that existing SVM algorithms satisfy this condition, we provide a version of the model algorithm that does. For this algorithm we show that when the slack multiplier C satisfies √1/2 ≤ C ≤ mL, where m is the number of samples and L is a matrix norm, then it takes no more than 4LC2m4/∈ iterations to drive the criterion to within ∈ of its optimum.
引用
收藏
页码:51 / 71
页数:20
相关论文
共 50 条
  • [41] General polynomial time decomposition algorithms
    List, N
    Simon, HU
    LEARNING THEORY, PROCEEDINGS, 2005, 3559 : 308 - 322
  • [42] General polynomial time decomposition algorithms
    List, Nikolas
    Simon, Hans Ulrich
    JOURNAL OF MACHINE LEARNING RESEARCH, 2007, 8 : 303 - 321
  • [43] General polynomial time decomposition algorithms
    Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany
    J. Mach. Learn. Res., 2007, (303-321): : 303 - 321
  • [44] Time-space lower bounds for the polynomial-time hierarchy on randomized machines
    Diehl, S
    van Melkebeek, D
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2005, 3580 : 982 - 993
  • [45] Time-space lower bounds for the polynomial-time hierarchy on randomized machines
    Diehl, Scott
    van Melkebeek, Dieter
    SIAM JOURNAL ON COMPUTING, 2006, 36 (03) : 563 - 594
  • [46] Polynomial-Time Algorithms for the Ordered Maximum Agreement Subtree Problem
    Anders Dessmark
    Jesper Jansson
    Andrzej Lingas
    Eva-Marta Lundell
    Algorithmica, 2007, 48 : 233 - 248
  • [47] Polynomial-time approximation algorithms for the coloring problem in some cases
    D. S. Malyshev
    Journal of Combinatorial Optimization, 2017, 33 : 809 - 813
  • [48] Polynomial-Time Algorithms for Multiagent Minimal-Capacity Planning
    Cubuktepe, Murat
    Blahoudek, Frantisek
    Topcu, Ufuk
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2022, 9 (03): : 1327 - 1338
  • [49] POLYNOMIAL-TIME ALGORITHMS ON CIRCULAR-ARC OVERLAP GRAPHS
    KASHIWABARA, T
    MASUDA, S
    NAKAJIMA, K
    NETWORKS, 1991, 21 (02) : 195 - 203
  • [50] Polynomial-time algorithms for the ordered maximum agreement subtree problem
    Dessmark, A
    Jansson, J
    Lingas, A
    Lundell, EM
    COMBINATORIAL PATTERN MATCHING, PROCEEDINGS, 2004, 3109 : 220 - 229