Holomorphicity of Slice-Regular Functions

被引:0
|
作者
Samuele Mongodi
机构
[1] Politecnico di Milano,Dipartimento di Matematica
来源
关键词
Slice-regular functions; Stem functions; Zero set of slice-regular functions; Holomorphic functions; 30G35; 16H99; 32A30; 30C15;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this work is to show how a number of results about slice-regular functions follow flawlessly from the analogous properties of holomorphic functions. For this purpose, we provide a general strategy by which properties of holomorphic functions can be translated in the setting of slice-regular functions. As an example of application of our method, we study the relation between the zeroes of a slice-regular function and the values of the corresponding stem function, showing that a slice-regular function vanishes if and only if the corresponding stem function takes values in a given complex analytic subset of C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}^4$$\end{document}. This allows us to recover in this setting a number of properties of the zeroes of holomorphic functions. We also discuss how our strategy can be adapted in some other contexts, like the study of the distribution of zeroes, of meromorphic functions, of representation formulas.
引用
收藏
相关论文
共 50 条
  • [31] Slice regular functions of several Clifford variables
    Ghiloni, R.
    Perotti, A.
    [J]. 9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 734 - 738
  • [32] Transcendental operators acting on slice regular functions
    de Fabritiis, Chiara
    [J]. CONCRETE OPERATORS, 2022, 9 (01): : 6 - 18
  • [33] A Phragmen - Lindelof principle for slice regular functions
    Gentili, Graziano
    Stoppato, Caterina
    Struppa, Daniele C.
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2011, 18 (04) : 749 - 759
  • [34] Global differential equations for slice regular functions
    Ghiloni, Riccardo
    Perotti, Alessandro
    [J]. MATHEMATISCHE NACHRICHTEN, 2014, 287 (5-6) : 561 - 573
  • [35] Carathéodory Theorems for Slice Regular Functions
    Guangbin Ren
    Xieping Wang
    [J]. Complex Analysis and Operator Theory, 2015, 9 : 1229 - 1243
  • [36] On some splitting properties of slice regular functions
    Oscar Gonzalez-Cervantes, J.
    Sabadini, Irene
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (09) : 1393 - 1409
  • [37] On Fiber Bundles and Quaternionic Slice Regular Functions
    Oscar Gonzalez-Cervantes, J.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (05)
  • [38] Fractional Slice Regular Functions of a Quaternionic Variable
    Gonzalez-Cervantes, Jose Oscar
    Bory-Reyes, Juan
    Sabadini, Irene
    [J]. RESULTS IN MATHEMATICS, 2024, 79 (01)
  • [39] A new series expansion for slice regular functions
    Stoppato, Caterina
    [J]. ADVANCES IN MATHEMATICS, 2012, 231 (3-4) : 1401 - 1416
  • [40] The Argument Principle for Quaternionic Slice Regular Functions
    Vlacci, Fabio
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2011, 60 (01) : 67 - 77