Deep learning based tissue analysis predicts outcome in colorectal cancer

被引:0
|
作者
Dmitrii Bychkov
Nina Linder
Riku Turkki
Stig Nordling
Panu E. Kovanen
Clare Verrill
Margarita Walliander
Mikael Lundin
Caj Haglund
Johan Lundin
机构
[1] University of Helsinki,Institute for Molecular Medicine Finland FIMM, Helsinki Institute for Life Science HiLIFE
[2] Uppsala University,Department of Women’s and Children’s Health, International Maternal and Child Health (IMCH)
[3] University of Helsinki,Department of Pathology, Medicum
[4] University of Helsinki and HUSLAB,Department of Pathology
[5] Helsinki University Hospital,Nuffield Department of Surgical Sciences
[6] NIHR Oxford Biomedical Research Centre,Department of Surgery
[7] University of Oxford,Research Programs Unit, Translational Cancer Biology
[8] University of Helsinki and Helsinki University Hospital,Department of Public Health Sciences
[9] University of Helsinki,undefined
[10] Global Health/IHCAR,undefined
[11] Karolinska Institutet,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Image-based machine learning and deep learning in particular has recently shown expert-level accuracy in medical image classification. In this study, we combine convolutional and recurrent architectures to train a deep network to predict colorectal cancer outcome based on images of tumour tissue samples. The novelty of our approach is that we directly predict patient outcome, without any intermediate tissue classification. We evaluate a set of digitized haematoxylin-eosin-stained tumour tissue microarray (TMA) samples from 420 colorectal cancer patients with clinicopathological and outcome data available. The results show that deep learning-based outcome prediction with only small tissue areas as input outperforms (hazard ratio 2.3; CI 95% 1.79–3.03; AUC 0.69) visual histological assessment performed by human experts on both TMA spot (HR 1.67; CI 95% 1.28–2.19; AUC 0.58) and whole-slide level (HR 1.65; CI 95% 1.30–2.15; AUC 0.57) in the stratification into low- and high-risk patients. Our results suggest that state-of-the-art deep learning techniques can extract more prognostic information from the tissue morphology of colorectal cancer than an experienced human observer.
引用
收藏
相关论文
共 50 条
  • [21] Deep Convolutional Neural Network-Based Positron Emission Tomography Analysis Predicts Esophageal Cancer Outcome
    Yang, Cheng-Kun
    Yeh, Joe Chao-Yuan
    Yu, Wei-Hsiang
    Chien, Ling-I
    Lin, Ko-Han
    Huang, Wen-Sheng
    Hsu, Po-Kuei
    [J]. JOURNAL OF CLINICAL MEDICINE, 2019, 8 (06)
  • [22] Deep Learning-Based Body Composition Analysis Predicts Outcome in Melanoma Patients Treated with Immune Checkpoint Inhibitors
    Faron, Anton
    Opheys, Nikola S.
    Nowak, Sebastian
    Sprinkart, Alois M.
    Isaak, Alexander
    Theis, Maike
    Mesropyan, Narine
    Endler, Christoph
    Sirokay, Judith
    Pieper, Claus C.
    Kuetting, Daniel
    Attenberger, Ulrike
    Landsberg, Jennifer
    Luetkens, Julian A. A.
    [J]. DIAGNOSTICS, 2021, 11 (12)
  • [23] Cellular senescence predicts treatment outcome in metastasised colorectal cancer
    Haugstetter, A. M.
    Loddenkemper, C.
    Lenze, D.
    Groene, J.
    Standfuss, C.
    Petersen, I.
    Doerken, B.
    Schmitt, C. A.
    [J]. BRITISH JOURNAL OF CANCER, 2010, 103 (04) : 505 - 509
  • [24] Microsatellite instability predicts better outcome in colorectal cancer patients
    Vidaurreta, M
    Sanz-Casla, MT
    Maestro, ML
    Rafael, S
    Jiménez, F
    Arroyo, M
    Fernández, C
    Cerdán, J
    [J]. MEDICINA CLINICA, 2005, 124 (04): : 121 - 125
  • [25] Prognostic Nutritional Index Predicts Postoperative Outcome in Colorectal Cancer
    Yasuhiko Mohri
    Yasuhiro Inoue
    Koji Tanaka
    Junichirou Hiro
    Keiichi Uchida
    Masato Kusunoki
    [J]. World Journal of Surgery, 2013, 37 : 2688 - 2692
  • [26] Cellular senescence predicts treatment outcome in metastasised colorectal cancer
    A M Haugstetter
    C Loddenkemper
    D Lenze
    J Gröne
    C Standfuß
    I Petersen
    B Dörken
    C A Schmitt
    [J]. British Journal of Cancer, 2010, 103 : 505 - 509
  • [27] Prognostic Nutritional Index Predicts Postoperative Outcome in Colorectal Cancer
    Mohri, Yasuhiko
    Inoue, Yasuhiro
    Tanaka, Koji
    Hiro, Junichirou
    Uchida, Keiichi
    Kusunoki, Masato
    [J]. WORLD JOURNAL OF SURGERY, 2013, 37 (11) : 2688 - 2692
  • [28] Tumor karyotype predicts clinical outcome in colorectal cancer patients
    Bardi, G
    Fenger, C
    Johansson, B
    Mitelman, F
    Heim, S
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2004, 22 (13) : 2623 - 2634
  • [29] Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study
    Veldhuizen, Gregory Patrick
    Roecken, Christoph
    Behrens, Hans-Michael
    Cifci, Didem
    Muti, Hannah Sophie
    Yoshikawa, Takaki
    Arai, Tomio
    Oshima, Takashi
    Tan, Patrick
    Ebert, Matthias P.
    Pearson, Alexander T.
    Calderaro, Julien
    Grabsch, Heike I.
    Kather, Jakob Nikolas
    [J]. GASTRIC CANCER, 2023, 26 (5) : 708 - 720
  • [30] Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study
    Gregory Patrick Veldhuizen
    Christoph Röcken
    Hans-Michael Behrens
    Didem Cifci
    Hannah Sophie Muti
    Takaki Yoshikawa
    Tomio Arai
    Takashi Oshima
    Patrick Tan
    Matthias P. Ebert
    Alexander T. Pearson
    Julien Calderaro
    Heike I. Grabsch
    Jakob Nikolas Kather
    [J]. Gastric Cancer, 2023, 26 : 708 - 720