Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient

被引:0
|
作者
Robert Mikutta
Stephanie Turner
Axel Schippers
Norman Gentsch
Sandra Meyer-Stüve
Leo M. Condron
Duane A. Peltzer
Sarah J. Richardson
Andre Eger
Günter Hempel
Klaus Kaiser
Thimo Klotzbücher
Georg Guggenberger
机构
[1] Martin Luther University Halle-Wittenberg,Soil Science and Soil Protection
[2] Leibniz Universität Hannover,Agriculture and Life Sciences
[3] Institut für Bodenkunde,Institute of Physics
[4] Bundesanstalt für Geowissenschaften und Rohstoffe,undefined
[5] Lincoln University,undefined
[6] Landcare Research,undefined
[7] Martin Luther University Halle-Wittenberg,undefined
来源
Scientific Reports | / 9卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Formation of mineral-organic associations is a key process in the global carbon cycle. Recent concepts propose litter quality-controlled microbial assimilation and direct sorption processes as main factors in transferring carbon from plant litter into mineral-organic associations. We explored the pathways of the formation of mineral-associated organic matter (MOM) in soil profiles along a 120-ky ecosystem gradient that developed under humid climate from the retreating Franz Josef Glacier in New Zealand. We determined the stocks of particulate and mineral-associated carbon, the isotope signature and microbial decomposability of organic matter, and plant and microbial biomarkers (lignin phenols, amino sugars and acids) in MOM. Results revealed that litter quality had little effect on the accumulation of mineral-associated carbon and that plant-derived carbon bypassed microbial assimilation at all soil depths. Seemingly, MOM forms by sorption of microbial as well as plant-derived compounds to minerals. The MOM in carbon-saturated topsoil was characterized by the steady exchange of older for recent carbon, while subsoil MOM arises from retention of organic matter transported with percolating water. Overall, MOM formation is not monocausal but involves various mechanisms and processes, with reactive minerals being effective filters capable of erasing chemical differences in organic matter inputs.
引用
收藏
相关论文
共 50 条
  • [21] Unfolding the Roles of Particulate- and Mineral-Associated Organic Carbon in Soil Microbial Communities
    Sun, Haiyan
    Sun, Fei
    Deng, Xiaoli
    Storn, Naleen
    Wan, Shubo
    FORESTS, 2025, 16 (01):
  • [22] Latitudinal patterns of particulate and mineral-associated organic matter down the soil profile in drylands
    Li, Xiaojuan
    Yang, Tinghui
    Hicks, Lettice C.
    Hu, Bin
    Li, Fanglan
    Liu, Xin
    Wei, Dandan
    Wang, Zilong
    Bao, Weikai
    SOIL & TILLAGE RESEARCH, 2023, 226
  • [23] Legacy Effects of Sorption Determine the Formation Efficiency of Mineral-Associated Soil Organic Matter
    Chen, Shuling
    Klotzbuecher, Thimo
    Lechtenfeld, Oliver J.
    Hong, Hanlie
    Liu, Chongxuan
    Kaiser, Klaus
    Mikutta, Christian
    Mikutta, Robert
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (03) : 2044 - 2053
  • [24] Author Correction: Different climate sensitivity of particulate and mineral-associated soil organic matter
    Emanuele Lugato
    Jocelyn M. Lavallee
    Michelle L. Haddix
    Panos Panagos
    M. Francesca Cotrufo
    Nature Geoscience, 2022, 15 : 509 - 509
  • [25] Legacy Effects of Sorption Determine the Formation Efficiency of Mineral-Associated Soil Organic Matter
    Chen, Shuling
    Klotzbücher, Thimo
    Lechtenfeld, Oliver J.
    Hong, Hanlie
    Liu, Chongxuan
    Kaiser, Klaus
    Mikutta, Christian
    Mikutta, Robert
    Environmental Science and Technology, 2022, 56 (03): : 2044 - 2053
  • [26] A large nitrogen supply from the stable mineral-associated soil organic matter fraction
    Villarino, Sebastian H.
    Talab, Emir
    Contisciani, Luciano
    Videla, Cecilia
    Di Geronimo, Paula
    Mastrangelo, Matias E. E.
    Georgiou, Katerina
    Jackson, Robert B. B.
    Pineiro, Gervasio
    BIOLOGY AND FERTILITY OF SOILS, 2023, 59 (07) : 833 - 841
  • [27] Quantifying mineral-associated organic matter in wetlands as an indicator of the degree of soil carbon protection
    Mirabito, Anthony J.
    Chambers, Lisa G.
    GEODERMA, 2023, 430
  • [28] The need to update and refine concepts relating to mineral-associated organic matter saturation in soil
    Song, Xiaojun
    Wu, Huijun
    Li, Shengping
    He, Ping
    Wu, Xueping
    SOIL BIOLOGY & BIOCHEMISTRY, 2025, 202
  • [29] A large nitrogen supply from the stable mineral-associated soil organic matter fraction
    Sebastián H. Villarino
    Emir Talab
    Luciano Contisciani
    Cecilia Videla
    Paula Di Geronimo
    Matias E. Mastrángelo
    Katerina Georgiou
    Robert B. Jackson
    Gervasio Piñeiro
    Biology and Fertility of Soils, 2023, 59 : 833 - 841
  • [30] Turnover of mineral-free and mineral-associated organic matter in a soil warming experiment in Northern Sweden
    Froberg, Mats
    Bryant, Charlotte
    Kleja, Dan Berggren
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2010, 74 (12) : A307 - A307