Local Currents in Metric Spaces

被引:0
|
作者
Urs Lang
机构
[1] ETH Zurich,Department of Mathematics
来源
关键词
Metric spaces; Normal currents; Flat chains; Integral currents; 49Q15; 58A25;
D O I
暂无
中图分类号
学科分类号
摘要
Ambrosio and Kirchheim presented a theory of currents with finite mass in complete metric spaces. We develop a variant of the theory that does not rely on a finite mass condition, closely paralleling the classical Federer–Fleming theory. If the underlying metric space is an open subset of a Euclidean space, we obtain a natural chain monomorphism from general metric currents to general classical currents whose image contains the locally flat chains and which restricts to an isomorphism for locally normal currents. We give a detailed exposition of the slicing theory for locally normal currents with respect to locally Lipschitz maps, including the rectifiable slices theorem, and of the compactness theorem for locally integral currents in locally compact metric spaces, assuming only standard results from analysis and measure theory.
引用
收藏
页码:683 / 742
页数:59
相关论文
共 50 条
  • [21] LOCAL PROPERTIES OF QUASIHYPERBOLIC MAPPINGS IN METRIC SPACES
    Huang, Xiaojun
    Liu, Hongjun
    Liu, Jinsong
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) : 23 - 40
  • [22] Local behavior of mappings of metric spaces with branching
    Skvortsov S.O.
    Journal of Mathematical Sciences, 2021, 254 (3) : 425 - 438
  • [23] LOCAL COMPACTNESS IN STRONGLY CONVEX METRIC SPACES
    DOOLEY, RA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (02): : A291 - A291
  • [24] Local and semilocal Poincare inequalities on metric spaces
    Bjorn, Anders
    Bjorn, Jana
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 119 : 158 - 192
  • [25] LOCAL MAXIMAL OPERATORS ON MEASURE METRIC SPACES
    Lin, Chin-Cheng
    Stempak, Krzysztof
    Wang, Ya-Shu
    PUBLICACIONS MATEMATIQUES, 2013, 57 (01) : 239 - 264
  • [26] LOCAL AND BOUNDARY BEHAVIOR OF MAPS IN METRIC SPACES
    Sevost'Yanov, E. A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2017, 28 (06) : 807 - 824
  • [27] LOCAL VERSUS GLOBAL PROPERTIES OF METRIC SPACES
    Arora, Sanjeev
    Lovasz, Laszlo
    Newman, Ilan
    Rabani, Yuval
    Rabinovich, Yuri
    Vempala, Santosh
    SIAM JOURNAL ON COMPUTING, 2012, 41 (01) : 250 - 271
  • [28] (Almost isometric) local retracts in metric spaces
    Quilis, Andres
    Zoca, Abraham Rueda
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (11)
  • [29] Flat currents modulo p in metric spaces and filling radius inequalities
    Ambrosio, Luigi
    Katz, Mikhail G.
    COMMENTARII MATHEMATICI HELVETICI, 2011, 86 (03) : 557 - 591
  • [30] Local higher integrability for parabolic quasiminimizers in metric spaces
    Masson M.
    Miranda Jr. M.
    Paronetto F.
    Parviainen M.
    Ricerche di Matematica, 2013, 62 (2) : 279 - 305