Local Currents in Metric Spaces

被引:0
|
作者
Urs Lang
机构
[1] ETH Zurich,Department of Mathematics
来源
关键词
Metric spaces; Normal currents; Flat chains; Integral currents; 49Q15; 58A25;
D O I
暂无
中图分类号
学科分类号
摘要
Ambrosio and Kirchheim presented a theory of currents with finite mass in complete metric spaces. We develop a variant of the theory that does not rely on a finite mass condition, closely paralleling the classical Federer–Fleming theory. If the underlying metric space is an open subset of a Euclidean space, we obtain a natural chain monomorphism from general metric currents to general classical currents whose image contains the locally flat chains and which restricts to an isomorphism for locally normal currents. We give a detailed exposition of the slicing theory for locally normal currents with respect to locally Lipschitz maps, including the rectifiable slices theorem, and of the compactness theorem for locally integral currents in locally compact metric spaces, assuming only standard results from analysis and measure theory.
引用
收藏
页码:683 / 742
页数:59
相关论文
共 50 条
  • [1] Local Currents in Metric Spaces
    Lang, Urs
    JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (03) : 683 - 742
  • [2] Currents in metric spaces
    Ambrosio, L
    Kirchheim, B
    ACTA MATHEMATICA, 2000, 185 (01) : 1 - 80
  • [3] Metric Currents and Geometry of Wasserstein Spaces
    Granieri, Luca
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2010, 124 : 91 - 125
  • [4] On metric spaces and local extrema
    Fedeli, Alessandro
    Le Donne, Attilio
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (13) : 2196 - 2199
  • [5] Local Embeddings of Metric Spaces
    Ittai Abraham
    Yair Bartal
    Ofer Neiman
    Algorithmica, 2015, 72 : 539 - 606
  • [6] LOCAL SYMMETRY IN METRIC SPACES
    PEPPER, PM
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (05) : 483 - 483
  • [7] Local Embeddings of Metric Spaces
    Abraham, Ittai
    Bartal, Yair
    Neiman, Ofer
    ALGORITHMICA, 2015, 72 (02) : 539 - 606
  • [8] LOCAL CONTRACTIONS IN METRIC SPACES
    HU, T
    KIRK, WA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 68 (01) : 121 - 124
  • [9] Local Embeddings of Metric Spaces
    Abraham, Ittai
    Bartal, Yair
    Neiman, Ofer
    STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, : 631 - 640
  • [10] Flat convergence for integral currents in metric spaces
    Stefan Wenger
    Calculus of Variations and Partial Differential Equations, 2007, 28 : 139 - 160